Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epilepsy is a disease that decreases the quality of life of patients; it is also among the most common neurological diseases. Several studies have approached the classification and prediction of seizures by using electroencephalographic data and machine learning techniques. A large diversity of features has been extracted from electroencephalograms to perform classification tasks; therefore, it is important to use feature selection methods to select those that leverage pattern recognition. In this study, the performance of a set of feature selection methods was compared across different classification models; the classification task consisted of the detection of ictal activity from the CHB-MIT and Siena Scalp EEG databases. The comparison was implemented for different feature sets and the number of features. Furthermore, the similarity between selected feature subsets across classification models was evaluated. The best F1-score (0.90) was reported by the K-nearest neighbor along with the CHB-MIT dataset. Results showed that none of the feature selection methods clearly outperformed the rest of the methods, as the performance was notably affected by the classifier, dataset, and feature set. Two of the combinations (classifier/feature selection method) reporting the best results were K-nearest neighbor/support vector machine and random forest/embedded random forest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031940 | PMC |
http://dx.doi.org/10.3390/s22083066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!