In this paper, we propose a method to estimate the position, orientation, and gain of a magnetic field sensor using a set of (large) electromagnetic coils. We apply the method for calibrating an array of optically pumped magnetometers (OPMs) for magnetoencephalography (MEG). We first measure the magnetic fields of the coils at multiple known positions using a well-calibrated triaxial magnetometer, and model these discreetly sampled fields using vector spherical harmonics (VSH) functions. We then localize and calibrate an OPM by minimizing the sum of squared errors between the model signals and the OPM responses to the coil fields. We show that by using homogeneous and first-order gradient fields, the OPM sensor parameters (gain, position, and orientation) can be obtained from a set of linear equations with pseudo-inverses of two matrices. The currents that should be applied to the coils for approximating these low-order field components can be determined based on the VSH models. Computationally simple initial estimates of the OPM sensor parameters follow. As a first test of the method, we placed a fluxgate magnetometer at multiple positions and estimated the RMS position, orientation, and gain errors of the method to be 1.0 mm, 0.2°, and 0.8%, respectively. Lastly, we calibrated a 48-channel OPM array. The accuracy of the OPM calibration was tested by using the OPM array to localize magnetic dipoles in a phantom, which resulted in an average dipole position error of 3.3 mm. The results demonstrate the feasibility of using electromagnetic coils to calibrate and localize OPMs for MEG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024658 | PMC |
http://dx.doi.org/10.3390/s22083059 | DOI Listing |
Biosensors (Basel)
December 2024
School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China.
Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose of this review paper is to outline the biological applications of soft wireless passive chipless sensors and provide a classification of wireless passive sensors and an overall explanation of the main work.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA. Electronic address:
Background: Inductively coupled wireless coils are increasingly used in MRI due to their cost-effectiveness and simplicity, eliminating the need for expensive components like preamplifiers, baluns, coil plugs, and coil ID circuits. Existing tools for predicting component values and electromagnetic (EM) fields are primarily designed for cylindrical volume coils, making them inadequate for irregular volume-type wireless coils.
Purpose: The aim of this study is to introduce and validate a novel magnetic (H-) field probe-based co-simulation method to accurately predict capacitance values and EM fields for irregular volume-type wireless coils, thereby addressing the limitations of current prediction tools.
Magn Reson Med Sci
January 2025
Department of Biomedical Engineering, Gachon University, Seongnam, Gyeonggi, Korea.
Purpose: Hyperthermia is a treatment that applies heat to damage or kill cancer cells and can be also used for drug deliveries. It is important to apply the heat into the specific area in order to target the cancer tissue and avoid damaging healthy tissue. For this reason, the development of heat applicators that have the capability to deliver the heat to the target area is vital.
View Article and Find Full Text PDFJ Magn Reson
January 2025
Department of Chemistry, Seoul National University, Seoul 08826 Republic of Korea; Advanced Institutes of Convergence Technology, Suwon 16229 Republic of Korea. Electronic address:
Most NMR samples are cylindrical, which is ideal for obtaining high-resolution NMR spectra, especially in superconducting magnets with a vertical bore. However, expanding NMR applicability to samples that are not necessarily cylindrical requires a new approach. In this study, we introduce a method for obtaining solution NMR signals from flat samples, such as flat containers or layered structures like a fuel cell.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
High-efficiency electromagnetic transducers are crucial for enabling the self-sustained operation of underwater electromagnetic sound sources under power-constrained conditions as noted by Hao, Xie, and Ma [Proceedings of the 2019 Western China Acoustics Academic Conference, Guangzhou, China (November 5-9, 2019)]. This paper proposes a permanent magnet drive technology to enhance the electromechanical conversion efficiency of can-type electromagnetic transducers under low-power driving conditions. The can-type transducers consist of coils, an armature, and a cylindrical magnetic core with a central pillar, similar to the pot core proposed by Cui, Xu, Xu, and Shui [Electr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!