A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Real-Time Effectiveness Evaluation Method for Remote Sensing Satellite Clusters on Moving Targets. | LitMetric

AI Article Synopsis

  • Recent advancements in remote sensing satellites have enhanced their effectiveness in Earth observation, drawing attention to the need for better quantitative evaluation methods.
  • This paper introduces a novel real-time evaluation model for satellite clusters, incorporating a multi-physical field simulation and a moving target observation indicator system.
  • A trained neural network is used for quick assessments, showing that this model can produce accurate, real-time evaluation results efficiently.

Article Abstract

Recently, remote sensing satellites have become increasingly important in the Earth observation field as their temporal, spatial, and spectral resolutions have improved. Subsequently, the quantitative evaluation of remote sensing satellites has received considerable attention. The quantitative evaluation method is conventionally based on simulation, but it has a speed-accuracy trade-off. In this paper, a real-time evaluation model architecture for remote sensing satellite clusters is proposed. Firstly, a multi-physical field coupling simulation model of the satellite cluster to observe moving targets is established. Aside from considering the repercussions of on-board resource constraints, it also considers the consequences of the imaging's uncertainty effects on observation results. Secondly, a moving target observation indicator system is developed, which reflects the satellite cluster's actual effectiveness in orbit. Meanwhile, an indicator screening method using correlation analysis is proposed to improve the independence of the indicator system. Thirdly, a neural network is designed and trained for stakeholders to realize a rapid evaluation. Different network structures and parameters are comprehensively studied to determine the optimized neural network model. Finally, based on the experiments carried out, the proposed neural network evaluation model can generate real-time, high-quality evaluation results. Hence, the validity of our proposed approach is substantiated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029598PMC
http://dx.doi.org/10.3390/s22082993DOI Listing

Publication Analysis

Top Keywords

remote sensing
16
neural network
12
evaluation method
8
sensing satellite
8
satellite clusters
8
moving targets
8
sensing satellites
8
quantitative evaluation
8
evaluation model
8
indicator system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!