Detection and criticality assessment of defects appearing in inaccessible locations in pipelines pose a great challenge for many industries. Inspection methods which allow for remote defect detection and accurate characterisation are needed. Guided wave testing (GWT) is capable of screening large lengths of pipes from a single device position, however it provides very limited individual feature characterisation. This paper adapts Plane Wave Imaging (PWI) to pipe GWT to improve defect characterization for inspection in nearby locations such as a few metres from the transducers. PWI performance is evaluated using finite element (FE) and experimental studies, and it is compared to other popular synthetic focusing imaging techniques. The study is concerned with part-circumferential part-depth planar cracks. It is shown that PWI achieves superior resolution compared to the common source method (CSM) and comparable resolution to the total focusing method (TFM). The techniques involving plane wave acquisition (PWI and CSM) are found to substantially outperform methods based on full matrix capture (FMC) in terms of signal-to-noise ratio (SNR). Therefore, it is concluded that PWI which achieves good resolution and high SNR is a more attractive choice for pipe GWT, compared to other considered techniques. Subsequently, a novel PWI transduction setup is proposed, and it is shown to suppresses the transmission of unwanted 0 mode, which further improves SNR of PWI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028324 | PMC |
http://dx.doi.org/10.3390/s22082973 | DOI Listing |
J Mol Model
January 2025
Department of Physics, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran.
Context: Exploration for renewable and environmentally friendly energy sources has become a major challenge to overcome the depletion of fossil fuels and their environmental hazards. Therefore, solar cell technology, as an alternative solution, has attracted the interest of many researchers. In the present work, the CsXInBr (X = Cu or Ag) compounds as lead-free halide perovskites have been studied due to their direct energy gap in the range of solar energy, thermodynamic stability, low effective mass of electrons, and high absorption coefficient.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Chemistry & Chemical Engineering, Linyi University, Linyi, 276000, China.
Context: In this work, a comparative study on the catalytic conversion of 5-hydroxymethyl furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) on precious Pd(111) and nonprecious Cu(111) was systematically performed. On the basis of the calculated activation energy (E) and reaction energy (E), the optimal energy path for the hydrogenation of HMF (F-CHO) into BHMF (F-CHOH) on Pd(111) is as follows: F-CHO + 2H → F-CHOH + H → F-CHOH; the minimum reaction path on Cu(111) is F-CHO + 2H → F-CHO + H → F-CHOH. On Cu(111), the formation of F-CHOH from F-CHO hydrogenation is the rate-determining step because it has the highest reaction energy barrier and the smallest rate constant.
View Article and Find Full Text PDFHeliyon
December 2024
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
In this article, the propagation of high-frequency (HF) plane electromagnetic waves through the lower ionosphere is numerically investigated using the real geometry of the Earth's magnetic field in the northern hemisphere. For this purpose, the profiles of electron density and the collision frequency in the layers of the lower ionosphere (D- and E-region) are considered using the reported experimental data for day and night. The reflection, transmission, and absorption coefficients of HF radio waves in the frequency range of 3 to 30 MHz are calculated in the ionosphere plasma.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!