Mechanics of a Biomimetic Moisture Sensitive Actuator Based on Compression Wood.

Polymers (Basel)

Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.

Published: April 2022

Various mechanisms of plant organ movements have been reported, including the close association of two layers with expressed differences in hygroscopic properties. Following this principle, actuator beams composed of thin veneers out of normal and compression wood cut from Scots pine ( L.) were prepared by using two types of adhesives. The mismatch of the swelling properties of the two layers in tight combination resulted in an expressed bending deflection in response to set humidity changes. The resulting curvatures were measured and analyzed by the Timoshenko bi-metal-model, as well as with an enhanced three-layer model, with the latter also considering the mechanical influence of the glueline on the actuator bending. The thermally induced strain in the original model was replaced by another strain due to moisture changes. The strain was modelled as a function of wood density, along with changes in wood moisture. Experiments with free movement of the bilayer to measure curvature, and with constraints to determine forces, were performed as well. Deformation and magnitude of actuators movements were in close agreement with the enhanced bilayer-model for the phenol-resorcinol-formaldehyde adhesive, which deviated substantially from the casein adhesive glued actuators. The obtained results are seen as critical for wood-based actuator systems that are potentially used in buildings or other applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031849PMC
http://dx.doi.org/10.3390/polym14081624DOI Listing

Publication Analysis

Top Keywords

compression wood
8
mechanics biomimetic
4
biomimetic moisture
4
moisture sensitive
4
actuator
4
sensitive actuator
4
actuator based
4
based compression
4
wood
4
wood mechanisms
4

Similar Publications

Experimental Study on Mechanical Performance of Single-Side Bonded Carbon Fibre-Reinforced Plywood for Wood-Based Structures.

Materials (Basel)

January 2025

Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.

In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.

View Article and Find Full Text PDF

The present paper investigates the possibility of replacing the traditional L-type corner joint used in chair construction with a 3D printed connector, manufactured using the Fused Filament Fabrication (FFF) method and black PLA as filament. The connector was designed to assemble the legs with seat rails and stretchers, and it was tested under diagonal tensile and compression loads. Its performance was compared to that of the traditional mortise-and-tenon joint.

View Article and Find Full Text PDF

The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.

View Article and Find Full Text PDF

Melting Behavior of Compression Molded Poly(ester amide) from 2,5-Furandicarboxylic Acid.

Polymers (Basel)

December 2024

Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.

PEA 46 is a biobased polymer with promising properties for sustainable packaging applications, which can be obtained via polymerization of a furan 2,5-dicarboxylic acid (2,5-FDCA) derivative and a diol monomer containing internal amide bonds (46 amido diol). In the literature, PEA 46 showed a complex series of thermal transitions during DSC scans. For this reason, in this initial exploratory study PEA 46 was subjected to compression molding and the melting behavior of film samples was investigated with parallel DSC and WAXS analyses.

View Article and Find Full Text PDF

The glass fiber-reinforced polymer (GFRP) materials of wind turbine blades can be recovered and recycled by crushing, thereby solving one of the most perplexing problems facing the wind energy sector. This process yields selectively crushed wind turbine blade (SCWTB), a novel waste that is almost exclusively composed of GFRP composite fibers that can be revalued in terms of their use as a raw material in concrete production. In this research, the fresh and mechanical performance of concrete made with 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!