The localized surface plasmon resonance (LSPR) due to light-particle interaction and its dependence on the surrounding medium have been widely manipulated for sensing applications. The sensing efficiency is governed by the refractive index-based sensitivity (ηRIS) and the full width half maximum (FWHM) of the LSPR spectra. Thereby, a sensor with high precision must possess both requisites: an effective ηRIS and a narrow FWHM of plasmon spectrum. Moreover, complex nanostructures are used for molecular sensing applications due to their good ηRIS values but without considering the wide-band nature of the LSPR spectrum, which decreases the detection limit of the plasmonic sensor. In this article, a novel, facile and label-free solution-based LSPR immunosensor was elaborated based upon LSPR features such as extinction spectrum and localized field enhancement. We used a 3D full-wave field analysis to evaluate the optical properties and to optimize the appropriate size of spherical-shaped gold nanoparticles (Au NPs). We found a change in Au NPs' radius from 5 nm to 50 nm, and an increase in spectral resonance peak depicted as a red-shift from 520 nm to 552 nm. Using this fact, important parameters that can be attributed to the LSPR sensor performance, namely the molecular sensitivity, FWHM, ηRIS, and figure of merit (FoM), were evaluated. Moreover, computational simulations were used to assess the optimized size (radius = 30 nm) of Au NPs with high FoM (2.3) and sharp FWHM (44 nm). On the evaluation of the platform as a label-free molecular sensor, Campbell's model was performed, indicating an effective peak shift in the adsorption of the dielectric layer around the Au NP surface. For practical realization, we present an LSPR sensor platform for the identification of dengue NS1 antigens. The results present the system's ability to identify dengue NS1 antigen concentrations with the limit of quantification measured to be 0.07 μg/mL (1.50 nM), evidence that the optimization approach used for the solution-based LSPR sensor provides a new paradigm for engineering immunosensor platforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031946PMC
http://dx.doi.org/10.3390/polym14081592DOI Listing

Publication Analysis

Top Keywords

lspr sensor
12
lspr
9
based lspr
8
sensing applications
8
solution-based lspr
8
dengue ns1
8
sensor
6
optimizing quantifying
4
quantifying gold
4
gold nanospheres
4

Similar Publications

A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.

View Article and Find Full Text PDF

Ultrasensitive and high selectivity detection of fibrin using Y-shaped DNA-homing peptide doped probe on localized surface plasmon resonance platform.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.

View Article and Find Full Text PDF

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

The optical detection of arsenic (As) in human biological fluids and environmental water samples is presented using alpha-cyclodextrin-modified silver nanoparticles (α/CyD-AgNPs) at the trace level. This method is based on the measurement of a red shift of the LSPR band of α/CyD-AgNPs in the region of 200-800 nm. The color of α/CyD-AgNPs was changed from yellow to colorless by the addition of As(iii).

View Article and Find Full Text PDF

Harnessing gold nanomaterials for advanced multicolor colorimetric biosensors in food hazards detection.

J Food Drug Anal

September 2024

Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China.

Article Synopsis
  • Food safety is threatened by hazards like bacteria, mycotoxins, pesticides, and heavy metals, necessitating effective detection methods.* -
  • Gold nanomaterials are key to developing multicolor colorimetric biosensors, allowing for intuitive, visual detection of various food contaminants due to their unique optical properties.* -
  • This review discusses methods for modifying gold nanomaterials to enhance sensor performance and highlights advancements in biosensors that can detect numerous food hazards with high sensitivity.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!