A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of Nanocomposite Materials Based on Conductive Polymers for Using in Glucose Biosensor. | LitMetric

Electropolymerized neutral red, thionine, and aniline were used as part of hybrid nanocomposite conductive polymers, to create an amperometric reagent-less biosensor for glucose determination. The structure of the obtained polymers was studied using infrared (IR) spectroscopy and scanning electron microscopy. Electrochemical characteristics were studied by cyclic voltammetry and impedance spectroscopy. It was shown that, from the point of view of both the rate of electron transfer to the electrode, and the rate of interaction with the active center of glucose oxidase (GOx), the most promising is a new nanocomposite based on poly(neutral red) (pNR) and thermally expanded graphite (TEG). The sensor based on the created nanocomposite material is characterized by a sensitivity of 1000 ± 200 nA × dm/mmol; the lower limit of the determined glucose concentrations is 0.006 mmol/L. The glucose biosensor based on this nanocomposite was characterized by a high correlation (R = 0.9828) with the results of determining the glucose content in human blood using the standard method. Statistical analysis did not reveal any deviations of the results obtained using this biosensor and the reference method. Therefore, the developed biosensor can be used as an alternative to the standard analysis method and as a prototype for creating sensitive and accurate glucometers, as well as biosensors to assess other metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026068PMC
http://dx.doi.org/10.3390/polym14081543DOI Listing

Publication Analysis

Top Keywords

conductive polymers
8
glucose biosensor
8
glucose
6
biosensor
5
development nanocomposite
4
nanocomposite materials
4
based
4
materials based
4
based conductive
4
polymers glucose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!