In this paper, we report on the thermal degradation behaviours and combustion attributes of some polymers based on polystyrene (PSt). Here, both additive and reactive strategies were employed, through the bulk polymerization route, where the modifying groups incorporated P-atom in various chemical environments. These included oxidation states of III or V, and the loading of phosphorus was kept at ca. 2 wt.% in all cases. The characterization techniques that were employed for the recovered products included spectroscopic, thermal, and calorimetric. It was found that the presence of different modifying groups influenced the degradation characteristics of the base polymer, and also exerted varying degrees of combustion inhibition. In all cases, the modification of the base matrix resulted in a noticeable degree of fire retardance as compared to that of the virgin material. Therefore, some of the modifications presented have the potential to be explored on a commercial scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029487PMC
http://dx.doi.org/10.3390/polym14081520DOI Listing

Publication Analysis

Top Keywords

thermal calorimetric
8
modifying groups
8
calorimetric investigations
4
investigations phosphorus-modified
4
phosphorus-modified chain
4
chain growth
4
growth polymers
4
polymers polystyrene
4
polystyrene paper
4
paper report
4

Similar Publications

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

X-ray diffraction (XRD) has evolved significantly since its inception, becoming a crucial tool for material structure characterization. Advancements in theory, experimental techniques, diffractometers and detection technology have led to the acquisition of highly accurate diffraction patterns, surpassing previous expectations. Extracting comprehensive information from these patterns necessitates different models due to the influence of both electron density and thermal motion on diffracted beam intensity.

View Article and Find Full Text PDF

This manuscript details the application of Isothermal Titration Calorimetry (ITC) to characterize the kinetics of 3CL, the main protease from the Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2), and its inhibition by Ensitrelvir, a known non-covalent inhibitor. 3CL is essential for producing the proteins necessary for viral infection, which led to the COVID-19 pandemic. The ITC-based assay provided rapid and reliable measurements of 3CL activity, allowing for the direct derivation of the kinetic enzymatic constants K and k by monitoring the thermal power required to maintain a constant temperature as the substrate is consumed.

View Article and Find Full Text PDF

A {CrLn} Complex with Exchange Coupled {Cr} Units: Structural Description and Magnetic Study.

Chemistry

January 2025

Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE (CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.

We have prepared and structurally characterized pivalate based {Cr Ln } complexes with Ln = Dy and Gd as well as the Y analogue, with the overall formula [Cr Ln (mdea)(piv)(OH)], Ln = Gd, Dy and Y. We are reporting a detailed experimental magnetic properties study, including magnetization relaxation dynamics and calorimetric data, supported with quantum chemical calculations. The synthesis of the Y derivative, allowed to precisely identify the Cr(III)-Cr(III) exchange interaction magnitude which proved moderately strong and in agreement with known magneto-structural correlations.

View Article and Find Full Text PDF

Construction of an In Situ-Generated Nanoscale Organic-Inorganic Hybrid System Using Hydrogen Bonding Interaction To Assist Thermal Properties of Resins.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Fine Chemicals and Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.

With the rapid development of science and technology, high-temperature-resistant resin systems are facing more severe challenges in extreme applications. To further improve the comprehensive thermal properties of phthalonitrile resins, an in situ generation of a high-temperature-resistant phthalonitrile resin achieving an organic-inorganic hybridization network is reported. A 3-aminophenol phthalonitrile containing -NH is used as a material to hybridize with prepared calcium phosphate nano-oligomers (CPOs), and the hybrid precursor is named as CAPN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!