Two Layer Sheets for Processing Post-Consumer Materials.

Polymers (Basel)

Department of Mechanical Engineering, Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany.

Published: April 2022

An increasing percentage of post-consumer materials (PCR) is becoming more and more important in all processing methods in polymer technology, also due to the lack of raw materials and political demands. Very special requirements are placed on material properties such as viscosities in extrusion. Low viscosities and the presence of particles affect extrusion in a negative manner. In this study, the use of multilayer sheets is determined to both ensure extrudability and contribute to a significant improvement in surface qualities. The focus is placed on the influence of viscosity and particles on mono- und multilayer sheet quality. Therefore, two different virgin materials with a melt flow rate (MFR) of 3 g/10 min and 6 g/10 min and two different PCR materials with a MFR of 16 g/10 min and 50 g/10 min are processed both in monolayers and in two layer sheets. Rheological investigations, optical analysis, and film thickness distributions are used to show the relationship between matrix viscosity and particles. The results show that the use of multilayer extrusion can improve both extrudability and sheet quality, so that multilayer sheets can offer a significant potential in the processing of PCR materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032465PMC
http://dx.doi.org/10.3390/polym14081507DOI Listing

Publication Analysis

Top Keywords

g/10 min
16
layer sheets
8
post-consumer materials
8
multilayer sheets
8
viscosity particles
8
sheet quality
8
mfr g/10
8
min g/10
8
pcr materials
8
materials
6

Similar Publications

Development and validation of a rapid and accurate ultra performance liquid chromatography-photodiode array method for concurrent quantification of thirty-two polyphenols in edible fruit of Cordia myxa Linn.

J Chromatogr A

December 2024

Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (Himachal Pradesh), 176061, India; Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002, India. Electronic address:

The aim of current work was to develop a novel, simple, sensitive, and reliable method for screening and quantification of thirty-two polyphenol compounds from Cordia myxa (C. myxa) using Ultra Performance Liquid Chromatography Photodiode Array detector (UPLC-PDA). With the help of the quaternary solvent manager and a comparison study of seven different columns packed with silica particles that are less than two micron thick (1.

View Article and Find Full Text PDF

This study aimed to evaluate the effectiveness of bioactive toothpastes in remineralizing eroded enamel surfaces in vitro. Bovine enamel blocks (n = 48) were obtained and classified into untreated, demineralized, and treated areas. Specimens were randomly classified into six groups (n = 8 each): fluoride-free toothpaste (NCT), Colgate Total 12 (PCT), Sensodyne Repair and Protect (SRP), Sensodyne Pronamel (SPE), Regenerador + Sensitive (RGS), and RGS/calcium booster (RCB).

View Article and Find Full Text PDF

Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields.

Mechanobiol Med

December 2024

Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA.

Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using or strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive.

View Article and Find Full Text PDF

Background: Sports nutrition guidelines recommend carbohydrate (CHO) intake be individualized to the athlete and modulated according to changes in training load. However, there are limited methods to assess CHO utilization during training sessions.

Objectives: We aimed to (1) quantify bivariate relationships between both CHO and overall energy expenditure (EE) during exercise and commonly used, non-invasive measures of training load across sessions of varying duration and intensity and (2) build and evaluate prediction models to estimate CHO utilization and EE with the same training load measures and easily quantified individual factors.

View Article and Find Full Text PDF

Development of a space-compatible packaging system for an integrated monolithic ultra-stable optical reference.

Rev Sci Instrum

October 2024

MOE Key Laboratory of TianQin Mission, TianQin Research Center for Gravitational Physics and School of Physics and Astronomy, Frontiers Science Center for TianQin, Gravitational Wave Research Center of CNSA, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China.

We report the development of a space-compatible packaging system for an integrated monolithic ultra-stable optical reference toward China's next-generation geodesy mission with low orbit satellite-to-satellite tracking. Building on our previous work, we optimized the mounting structure and thermal insulation mechanism using the finite element method. The comprehensive simulation results demonstrated the robustness of the entire packaging system with enough margins to withstand severe launch loads and maintain an ultra-high geometric cavity length stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!