Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we propose a logic-in-memory (LIM) inverter comprising a silicon nanowire (SiNW) n-channel feedback field-effect transistor (n-FBFET) and a SiNW p-channel metal oxide semiconductor field-effect transistor (p-MOSFET). The hybrid logic and memory operations of the LIM inverter were investigated by mixed-mode technology computer-aided design simulations. Our LIM inverter exhibited a high voltage gain of 296.8 (/) when transitioning from logic '1' to '0' and 7.9 (/) when transitioning from logic '0' to '1', while holding calculated logic at zero input voltage. The energy band diagrams of the n-FBFET structure demonstrated that the holding operation of the inverter was implemented by controlling the positive feedback loop. Moreover, the output logic can remain constant without any supply voltage, resulting in zero static power consumption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028487 | PMC |
http://dx.doi.org/10.3390/mi13040590 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!