Effect of Wetting Characteristics of Polishing Fluid on the Quality of Water-Dissolution Polishing of KDP Crystals.

Micromachines (Basel)

Ultra-Precision Machining Center, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of Ministry of Education, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310024, China.

Published: March 2022

KDP crystals constitute the only laser-frequency conversion and electro-optical switches that can be used in laser systems for inertial confinement fusion. However, KDP crystals are difficult to produce because of their inherent softness, brittleness, water-solubility, and temperature sensitivity. The authors' group developed a water-dissolution polishing method in previous studies to obtain near-damage-free KDP surfaces. In this article, the effect of the wetting characteristics of the water dissolution polishing fluid on the crystal surface-a factor rarely considered in the usual process optimization-on the polished surface quality was comprehensively studied. The mean radius of micro water droplets at 5 wt.% and 7.5 wt.% water content was approximately 0.6 nm and 1.2 nm, respectively. Theoretically, the smaller micro water droplet size is beneficial to the polished surface quality. When the water content was 5 wt.%, due to the poor wetting characteristics of the polishing fluid, surface scratches appeared on the polished surface; when the water content was 7.5 wt.%, the effects of the wetting characteristics and the radius of the micro water droplets reached a balance, and the polished surface quality was the best (Ra 1.260 nm). These results confirm that the wetting characteristics of the polishing fluid constitute one of the key factors that must be considered. This study proves that the wetting characteristics of the polishing fluid should be improved during the optimization process of polishing fluid composition when using oil-based polishing fluids for ultra-precision polishing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024437PMC
http://dx.doi.org/10.3390/mi13040535DOI Listing

Publication Analysis

Top Keywords

wetting characteristics
24
polishing fluid
24
characteristics polishing
16
polished surface
16
kdp crystals
12
surface quality
12
micro water
12
water content
12
polishing
10
water-dissolution polishing
8

Similar Publications

Purpose: To assess the impact of anodization and instrumentation on titanium abutment surface characteristics (surface roughness and wettability) and biofilm formation (viability and mass).

Materials And Methods: Titanium discs were obtained from pre-milled abutment blanks made of titanium-6aluminum-7niobium alloy. Polished samples were divided into three groups: un-anodized, gold-anodized, and pink-anodized.

View Article and Find Full Text PDF

Enhanced Efficiency of Anionic Guerbet-Type Amino Acid Surfactants.

Langmuir

January 2025

Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group, North-West University, 11 Hoffman Street, Potchefstroom 2522, South Africa.

This study investigates the surfactant properties and efficiency of linear and Guerbet-type amino acid surfactants. Utilizing a Wilhelmy plate method, we assessed the colloidal efficiency of these surfactants, with the lowest observed critical micelle concentration at 0.046 mmol L, significantly reducing surface tension to as low as 25.

View Article and Find Full Text PDF

Inspired by the adhesion differences on the surfaces of fresh and dried rose petals, a rose bionic self-cleaning fog collector (RBSC) was designed and prepared to realize a self-driven fog harvesting function. The droplet detachment iteration rate was revealed by the regulating mechanism of the surface adhesion force of the RBSC and the influence of bionic texture parameters, as demonstrated through the fog harvesting experiment and droplet detachment failure analysis. Through the surface adhesion force regulation, the probability of droplet dissipation with the airflow is reduced by increasing the falling droplets' mass, and the single surface fog capture efficiency is up to 740 mg cm h.

View Article and Find Full Text PDF

The study highlights the impact of different carbohydrate-based wall materials on the encapsulation and release of flavors and physicochemical characteristics of spray-dried oleoresin blends. The inlet temperature and the wall material type significantly affected the spray drying yield, and Hi-Cap 100, at 150 °C, produced the highest yield. All the wall materials had high water solubility, and Hi-Cap 100 reported the best wettability.

View Article and Find Full Text PDF

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!