The metallization of plastics is an important industrial process. Plastics are metallized for both aesthetic and functional purposes. The unceasing pursuit towards the miniaturization and reduction in the part's size challenges the already complicated process of metallization. A rigorous research study uncovering the effects of miniaturization on the quality of metallized parts is missing at the state-of-the-art level. This study focuses on the quality of the deposited metal film based on geometrical dimensions and systematically characterizes the effects of miniaturization on the metallized micro-components. The experimental results presented in this paper reveal the hidden synergy among the metallization quality, part dimension, and process conditions used both for substrate fabrication and for metallization. The paper broadens the fundamental understanding about the interactions of various design, materials, and process parameters involved in the manufacturing process chain. The results and discussions presented in this paper will be valuable sources of information to deal with the integration of micrometallic structures on polymeric substrates for high precision applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026453 | PMC |
http://dx.doi.org/10.3390/mi13040515 | DOI Listing |
Nucleic Acids Res
January 2025
Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Epi Biotech Co., Ltd., Incheon 21983, Republic of Korea.
We previously demonstrated that C-X-C Motif Chemokine Ligand 12 (CXCL12) is primarily secreted by dermal fibroblasts in response to androgens and induces hair miniaturization in the mouse androgenic alopecia (AGA) model. However, the direct effects of androgen-induced CXCL12 on dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs) have not been demonstrated. First, we compared single-cell RNA sequencing data between mouse and human skin, and the results show that CXCL12 is highly co-expressed with the androgen receptor (AR) in the DPCs and DSCs of only human hair.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Dermatology and Venereology Department, Faculty of Medicine (Girls), Al-Azhar University, 53, New Cairo, 3rd Zone Fifth, Settlement, Cairo, Egypt.
Androgenic alopecia (AGA) is the most common form of non-scarring hair loss, characterized by marked hair follicle miniaturization. AGA is a challenging skin condition with limited treatment results. Laser light can promote hair growth at specific wavelengths.
View Article and Find Full Text PDFCells
January 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction B (n, alpha) Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely -Carborane (Carb) or 1,2-dihexyl--Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!