Nanoparticles are playing an increasing role in biomedical applications. Excitotoxicity plays a significant role in the pathophysiology of neurodegenerative diseases, such as Alzheimer's or Parkinson's disease. Glutamate ionotropic receptors, mainly those activated by N-methyl-D-aspartate (NMDA), play a key role in excitotoxic death by increasing intraneuronal calcium levels; triggering mitochondrial potential collapse; increasing free radicals; activating caspases 3, 9, and 12; and inducing endoplasmic reticulum stress. Neutral phosphorous dendrimers, acting intracellularly, have neuroprotective actions by interfering with NMDA-mediated excitotoxic mechanisms in rat cortical neurons. In addition, phosphorous dendrimers can access neurons inside human brain organoids, complex tridimensional structures that replicate a significant number of properties of the human brain, to interfere with NMDA-induced mechanisms of neuronal death. Phosphorous dendrimers are one of the few nanoparticles able to gain access to the inside of neurons, both in primary cultures and in brain organoids, and to exert pharmacological actions by themselves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024777PMC
http://dx.doi.org/10.3390/ijms23084391DOI Listing

Publication Analysis

Top Keywords

phosphorous dendrimers
16
brain organoids
12
neutral phosphorous
8
cortical neurons
8
excitotoxic death
8
human brain
8
engineered neutral
4
phosphorous
4
dendrimers
4
dendrimers protect
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!