Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot-Marie-Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca, glucose, miRNA) and electric activity are also identified in vivo or in vitro.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027513 | PMC |
http://dx.doi.org/10.3390/ijms23084255 | DOI Listing |
Bone Res
January 2025
Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.
View Article and Find Full Text PDFMethods
January 2025
Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas 50103, Lithuania; Department of Mathematical Modelling, Kaunas University of Technology, Kaunas 51368, Lithuania.
Gap junction (GJ) channels, formed of connexin (Cx) protein, enable direct intercellular communication in most vertebrate tissues. One of the key biophysical characteristics of these channels is their unitary conductance, which can be affected by mutations in Cx genes and various biochemical factors, such as posttranslational modifications. Due to the unique intercellular configuration of GJ channels, recording single-channel currents is challenging, and precise data on unitary conductances of some Cx isoforms remain limited.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, United States.
Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression.
View Article and Find Full Text PDFGenome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
Eur J Neurol
January 2025
Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
Background: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye.
Methods: Demographic and clinical findings were recorded.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!