Antiseptic Effects and Biosafety of a Controlled-Flow Electrolyzed Acid Solution Involve Electrochemical Properties, Rather than Free Radical Presence.

Microorganisms

Laboratory of Connective Tissue, Centro Nacional de Investigación y Atención de Quemados, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Calzada México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico.

Published: March 2022

Electrolyzed acid solutions produced by different methods have antiseptic properties due to the presence of chlorine and reactive oxygen species. Our aim was to determine whether a controlled-flow electrolyzed acid solution (CFEAS) has the ability to improve wound healing due to its antiseptic and antibiofilm properties. First, we demonstrated in vitro that Gram-negative and Gram-positive bacteria were susceptible to CFEAS, and the effect was partially sustained for 24 h, evidencing antibiofilm activity (p < 0.05, CFEAS-treated vs. controls). The partial cytotoxicity of CFEAS was mainly observed in macrophages after 6 h of treatment; meanwhile, fibroblasts resisted short-lived free radicals (p < 0.05, CFEAS treated vs. controls), perhaps through redox-regulating mechanisms. In addition, we observed that a single 24 h CFEAS treatment of subacute and chronic human wounds diminished the CFU/g of tissue by ten times (p < 0.05, before vs. after) and removed the biofilm that was adhered to the wound, as we observed via histology from transversal sections of biopsies obtained before and after CFEAS treatment. In conclusion, the electrolyzed acid solution, produced by a novel method that involves a controlled flow, preserves the antiseptic and antibiofilm properties observed in other, similar formulas, with the advantage of being safe for eukaryotic cells; meanwhile, the antibiofilm activity is sustained for 24 h, both in vitro and in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032035PMC
http://dx.doi.org/10.3390/microorganisms10040745DOI Listing

Publication Analysis

Top Keywords

electrolyzed acid
16
acid solution
12
controlled-flow electrolyzed
8
antiseptic antibiofilm
8
antibiofilm properties
8
antibiofilm activity
8
cfeas treatment
8
cfeas
6
antiseptic
4
antiseptic effects
4

Similar Publications

Anodic oxygen evolution reaction (OER) exhibits a sluggish four-electron transfer process, necessitating catalysts with exceptional catalytic activity to enhance its kinetic rate. Van der Waals layered oxides are ideal materials for catalyst design, yet its stability for acidic OER remains large obstacle. Doping provides a crucial way to improve the activity and stability simultaneously.

View Article and Find Full Text PDF

Boosting the durability of RuO via confinement effect for proton exchange membrane water electrolyzer.

Nat Commun

January 2025

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China.

Ruthenium dioxide has attracted extensive attention as a promising catalyst for oxygen evolution reaction in acid. However, the over-oxidation of RuO into soluble HRuO species results in a poor durability, which hinders the practical application of RuO in proton exchange membrane water electrolysis. Here, we report a confinement strategy by enriching a high local concentration of in-situ formed HRuO species, which can effectively suppress the RuO degradation by shifting the redox equilibrium away from the RuO over-oxidation, greatly boosting its durability during acidic oxygen evolution.

View Article and Find Full Text PDF

End-of-life plastics and carbon dioxide (CO2) are anthropogenic waste carbon resources; it is imperative to develop efficient technologies to convert them to value-added products. Here we report the upcycling of polyethylene terephthalate (PET) plastic and CO2 toward valuable potassium diformate, terephthalic acid, and H2 fuel via decoupled electrolysis. This product-oriented process is realized by two electrolyzers: (1) a solid-state-electrolyte based CO2 electrolyzer and (2) a solid-polymer-electrolyte-based PET electrolyzer.

View Article and Find Full Text PDF

Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off.

View Article and Find Full Text PDF

Electrocatalytic CO2 reduction (CO2R) to multi-carbon (C2+) products in strong acid presents a promising approach to mitigate the CO2 loss commonly encountered in alkaline and neutral systems. However, this process often suffers from low selectivity for C2+ products due to the competing C1 (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!