In bacteria, the translation of genetic information can begin through at least three different mechanisms: canonical or Shine-Dalgarno-led initiation, readthrough or 70S scanning initiation, or leaderless initiation. Here, we discuss the main features and regulation of the last, which is characterized mainly by the ability of 70S ribosomal particles to bind to AUG located at or near the 5' end of mRNAs to initiate translation. These leaderless mRNAs (lmRNAs) are rare in enterobacteria, such as , but are common in other bacteria, such as and where they may represent more than 20% and even up to 60% of the genes. Given that lmRNAs are devoid of a 5' untranslated region and the Shine-Dalgarno sequence located within it, the mechanism of translation regulation must depend on molecular strategies that are different from what has been observed in the Shine-Dalgarno-led translation. Diverse regulatory mechanisms have been proposed, including the processing of ribosomal RNA and changes in the abundance of translation factors, but all of them produce global changes in the initiation of lmRNA translation. Thus, further research will be required to understand how the initiation of the translation of particular lmRNA genes is regulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031893 | PMC |
http://dx.doi.org/10.3390/microorganisms10040723 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!