An emerging target to overcome cancer resistance to treatments is copper, which is upregulated in a wide variety of tumors and may be associated with cancer progression and metastases. The aim of this study was to develop a multimodal ultrasmall nanoparticle, CuPRiX, based on the clinical AGuIX nanoparticle made of the polysiloxane matrix on which gadolinium chelates are grafted. Such hybrid nanoparticles allow: (i) a localized depletion of copper in tumors to prevent tumor cell dissemination and metastasis formation and (ii) an increased sensitivity of the tumor to radiotherapy (RT) due to the presence of high Z gadolinium (Gd) atoms. CuPRiX nanoparticles are obtained by controlled acidification of AGuIX nanoparticles. They were evaluated in vitro on two cancer cell lines (lung and head and neck) using the scratch-wound assay and clonogenic cell survival assay. They were able to reduce cell migration and invasion and displayed radiosensitizing properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024746 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14040814 | DOI Listing |
Dalton Trans
December 2024
Department of Biotechnology, Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow PL35-310, Poland.
In this work, we are showing the results of the X- and Q-band electron magnetic resonance measurements of ultra-small ZnMnFeO nanoparticles ( 8 nm) with a very narrow size distribution. The chosen synthetic route allows for precise structural modifications with a broad concentration range ( = 0, 0.2, 0.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
Pirquitasite AgZnSnS (AZTS) nanocrystals (NCs) are emergent, lead-free emissive materials in the coinage chalcogenide family with applications in optoelectronic technologies. Like many multinary nanomaterials, their phase-pure synthesis is complicated by the generation of impurities, e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen University, School of Medicine, Xiamen, Fujian 361004, China.
Glioblastoma multiforme (GBM), a highly prevalent and lethal form of malignant tumor, is typically treated with Temozolomide (TMZ), a chemotherapeutic agent. Nevertheless, the effectiveness of TMZ is hampered by inadequate cell entry, systemic adverse effects, and monotherapy constraints. Previous clinical studies have demonstrated that combination therapy can significantly enhance the therapeutic efficacy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Microbiology, University of Washington, Seattle, WA 98109.
Spectrochim Acta A Mol Biomol Spectrosc
November 2024
Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!