Maize yield is significantly influenced by low temperature, particularly chilling stress at the maize seedling stage. Various physiological approaches have been established to resist chilling stress; however, the detailed proteins change patterns underlying the maize chilling stress response at the seedling stage remain unknown, preventing the development of breeding-based methods to resist chilling stress in maize. Thus, we performed comprehensive physiological, comparative proteomics and specific phytohormone abscisic acid (ABA) assay on different maize inbred lines (tolerant-line KR701 and sensitive-line hei8834) at different seedling stages (the first leaf stage and third leaf stage) under chilling stress. The results revealed several signalling proteins and pathways in response to chilling stress at the maize seedling stage. Meanwhile, we found ABA pathway was important for chilling resistance of tolerant-line KR701 at the first leaf stage. Related chilling-responsive proteins were further catalogued and analysed, providing a resource for further investigation and maize breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024610PMC
http://dx.doi.org/10.3390/cells11081321DOI Listing

Publication Analysis

Top Keywords

chilling stress
24
stress maize
12
seedling stage
12
leaf stage
12
comparative proteomics
8
chilling
8
maize
8
maize seedling
8
resist chilling
8
tolerant-line kr701
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!