A Uzawa-Type Iterative Algorithm for the Stationary Natural Convection Model.

Entropy (Basel)

College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, China.

Published: April 2022

In this study, a Uzawa-type iterative algorithm is introduced and analyzed for solving the stationary natural convection model, where physical variables are discretized by utilizing a mixed finite element method. Compared with the common Uzawa iterative algorithm, the main finding is that the proposed algorithm produces weakly divergence-free velocity approximation. In addition, the convergence results of the proposed algorithm are provided, and numerical tests supporting the theory are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028471PMC
http://dx.doi.org/10.3390/e24040543DOI Listing

Publication Analysis

Top Keywords

iterative algorithm
12
uzawa-type iterative
8
stationary natural
8
natural convection
8
convection model
8
proposed algorithm
8
algorithm
5
algorithm stationary
4
model study
4
study uzawa-type
4

Similar Publications

Background: Social media has become a widely used way for people to share opinions about health care and medical topics. Social media data can be leveraged to understand patient concerns and provide insight into why patients may turn to the internet instead of the health care system for health advice.

Objective: This study aimed to develop a method to investigate Reddit posts discussing health-related conditions.

View Article and Find Full Text PDF

Background: With the widespread use of lumbar pedicle screws for internal fixation, the morphology of the screws and the surrounding tissues should be evaluated. The metal artifact reduction (MAR) technique can reduce the artifacts caused by pedicle screws, improve the quality of computed tomography (CT) images after pedicle fixation, and provide more imaging information to the clinic.

Purpose: To explore whether the MAR+ method, a projection-based algorithm for correcting metal artifacts through multiple iterative operations, can reduce metal artifacts and have an impact on the structure of the surrounding metal.

View Article and Find Full Text PDF

For the application scenario of multi-user, high-bandwidth laser communication in satellite internet, this paper proposes a spatiotemporal vector optimization algorithm to achieve high energy utilization in arbitrary multi-beam generation using a liquid crystal optical phased array antenna. The core components of this method involve optimizing phase offsets and power coefficients through iterative processes to achieve precise beam shaping and efficient energy distribution among multiple beams. This approach overcomes the single-link limitation of traditional laser terminals and resolves challenges such as low radiation efficiency and substantial power loss in multi-beam generation systems utilizing passive phased array antennas.

View Article and Find Full Text PDF

Due to their advantages of compact geometries and lightweight, diffractive optical elements (DOEs) are attractive in various applications such as sensing, imaging and holographic display. When designing DOEs based on algorithms, a diffraction model is required to trace the diffracted light propagation and to predict the performance. To have more precise diffraction field tracing and optical performance simulation, different diffraction models have been proposed and developed.

View Article and Find Full Text PDF

The neural networks offer iteration capability for low-density parity-check (LDPC) decoding with superior performance at transmission. However, to cope with increasing code length and rate, the complexity of the neural network increases significantly. This is due to the large amount of feature extraction required to maintain the error correction capability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!