FeCoCrNi and FeCoNiCrMo high-entropy alloy powders were prepared by gas atomization. Two kinds of coatings were prepared on the surface of 304 stainless steel by laser cladding technology. The effect of Mo element on the microstructure of laser cladding FeCoCrNi coating and its corrosion behavior in 3.5 wt.% NaCl solution was investigated. Both FeCoCrNi and FeCoCrNiMo powders exhibit a single-phase FCC structure. Due to the remelting and multiple heat treatments during the preparation of the laser cladding coating, a small amount of σ and μ phases appeared in the FeCoCrNiMo coating. The microstructures of the two coatings from the bonding area to the top layer are planar, columnar and equiaxed grains, respectively. The addition of the Mo element causes the dendrite size in the middle region of the FeCoCrNiMo coating increases significantly and exhibits obvious orientation characteristics. FeCoCrNiMo coating has high corrosion potential (-0.01 ) and low current density (0.94 × 10 A/cm) in 3.5 wt.% NaCl solution, showing excellent corrosion resistance. The passivation film formed on corroded the FeCoCrNiMo coating contains high content of oxides of Cr and Mo. The addition of the Mo element enhances the compactness and pitting resistance of the passivation film.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028930 | PMC |
http://dx.doi.org/10.3390/e24040539 | DOI Listing |
Mater Horiz
January 2025
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
MAX (MAX) phases are a novel class of materials with a closely packed hexagonal structure that bridge the gap between metals and ceramics, garnering tremendous research interest worldwide in recent years. Benefiting from their unique layered structure and mixed covalent-ionic-metallic bonding characteristics, MAX phase coatings possess excellent oxidation resistance, and exceptional electrical and thermal conductivities, making them highly promising for applications in advanced nuclear materials, battery plate protection materials, and aero-engine functional materials. This review aims to provide a comprehensive understanding of MAX phase coatings.
View Article and Find Full Text PDFACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFIn this Letter, we propose a new method utilizing femtosecond laser direct writing technology to rapidly inscribe high-quality tilted fiber Bragg gratings (TFBGs) in multicore fibers (MCFs). A series of TFBGs with varying tilt angles were directly inscribed in MCFs using the Plane-by-Plane (Pl-by-Pl) method, and the writing time for a 4 mm long TFBG was only 3.60 s.
View Article and Find Full Text PDFWe report on the operation of an efficient Tm,Ho:YLF depressed cladding, channeled waveguide laser in both continuous-wave (CW) and passively Q-switched (PQS) regimes, producing laser emission at the wavelength of 2.05 µm. The 70-µm diameter depressed cladding waveguide, fabricated using femtosecond laser inscription, had a low propagation loss value of 0.
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Electrical Engineering, University of Notre Dame, Notre Dame, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!