The statistical behaviours of different entropy generation mechanisms in the head-on interaction of turbulent premixed flames with a chemically inert wall within turbulent boundary layers have been analysed using Direct Numerical Simulation data. The entropy generation characteristics in the case of head-on premixed flame interaction with an isothermal wall is compared to that for an adiabatic wall. It has been found that entropy generation due to chemical reaction, thermal diffusion and molecular mixing remain comparable when the flame is away from the wall for both wall boundary conditions. However, the wall boundary condition affects the entropy generation during flame-wall interaction. In the case of isothermal wall, the entropy generation due to chemical reaction vanishes because of flame quenching and the entropy generation due to thermal diffusion becomes the leading entropy generator at the wall. By contrast, the entropy generation due to thermal diffusion and molecular mixing decrease at the adiabatic wall because of the vanishing wall-normal components of the gradients of temperature and species mass/mole fractions. These differences have significant effects on the overall entropy generation rate during flame-wall interaction, which suggest that combustor wall cooling needs to be optimized from the point of view of structural integrity and thermodynamic irreversibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024912 | PMC |
http://dx.doi.org/10.3390/e24040463 | DOI Listing |
J Comp Physiol B
January 2025
Departamento de Fisiologia, Instituto de Biociências da Universidade de São Paulo, São Paulo, Brazil.
During the transition from fresh waters to terrestrial habitats, significant adaptive changes occurred in kidney function of vertebrates to cope with varying osmotic challenges. We investigated the mechanisms driving water conservation in the mammalian nephron, focusing on the relative contributions of active ion transport and Starling forces. We constructed a thermodynamic model to estimate the entropy generation associated with different processes within the nephron, and analyzed their relative importance in urine formation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
Measuring bipartite fluctuations of a conserved charge, such as the particle number, is a powerful approach to understanding quantum systems. When the measured region has sharp corners, the bipartite fluctuation receives an additional contribution known to exhibit a universal angle dependence in 2D isotropic and uniform systems. Here we establish that, for generic lattice systems of interacting particles, the corner charge fluctuation is directly related to quantum geometry.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France.
Energy-filtered quantum states are promising candidates for efficiently simulating thermal states. We explore a protocol designed to transition a product state into an eigenstate located in the middle of the spectrum; this is achieved by gradually reducing its energy variance, which allows us to comprehensively understand the crossover phenomenon and the subsequent convergence toward thermal behavior. We introduce and discuss three energy-filtering regimes (short, medium, and long), and we interpret them as stages of thermalization.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Engineering, New York University Shanghai, 567 West Yangsi Road, Pudong, Shanghai, 200124, China.
A comprehensive investigation of the entanglement characteristics is carried out on tripartite spin-1/2 systems, examining prototypical tripartite states, the thermal Heisenberg model, and the transverse field Ising model. The entanglement is computed using the Rényi relative entropy. In the traditional Rényi relative entropy, the generalization parameter α can take values only in the range [Formula: see text] due to the requirements of joint convexity of the measure.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China.
Hybrid density functionals, such as B3LYP and PBE0, have achieved remarkable success by substantially improving over their parent methods, namely Hartree-Fock and the generalized gradient approximation, and generally outperforming the second-order Møller-Plesset perturbation theory (MP2) that is more expensive. Here, we extend the linear scheme of hybrid multiconfiguration pair-density functional theory (HMC-PDFT) by incorporating a cross-entropy ingredient to balance the description of static and dynamic correlation effects, leading to a consistent improvement on both exchange and correlation energies. The B3LYP-like translated on-top functional (tB4LYP) developed along this line not only surpasses the accuracy of its parent methods, the complete active space self-consistent field (CASSCF) and the original MC-PDFT functionals (tBLYP and tB3LYP), but also outperforms the widely used complete active space second-order perturbation theory (CASPT2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!