We investigated predictions from 18F-FDG PET/CT using machine learning (ML) to assess the neoadjuvant CCRT response of patients with stage III non-small cell lung cancer (NSCLC) and compared them with predictions from conventional PET parameters and from physicians. A retrospective study was conducted of 430 patients. They underwent 18F-FDG PET/CT before initial treatment and after neoadjuvant CCRT followed by curative surgery. We analyzed texture features from segmented tumors and reviewed the pathologic response. The ML model employed a random forest and was used to classify the binary outcome of the pathological complete response (pCR). The predictive accuracy of the ML model for the pCR was 93.4%. The accuracy of predicting pCR using the conventional PET parameters was up to 70.9%, and the accuracy of the physicians’ assessment was 80.5%. The accuracy of the prediction from the ML model was significantly higher than those derived from conventional PET parameters and provided by physicians (p < 0.05). The ML model is useful for predicting pCR after neoadjuvant CCRT, which showed a higher predictive accuracy than those achieved from conventional PET parameters and from physicians.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031866 | PMC |
http://dx.doi.org/10.3390/cancers14081987 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!