Rice-crayfish system has been extensively promoted in China in recent years. However, the presence of toxic elements in soil may threaten the quality of agricultural products. In this study, eight toxic elements were determined in multi-medium including soil, rice, and crayfish from the rice-crayfish system (RCS) and conventional rice culture (CRC) area. Crayfish obtained a low level of toxic element content, and mercury (Hg) in rice from RCS showed the highest bioavailability and mobility. Health risk assessment, coupled with Monte Carlo simulation, revealed that the dietary exposure to arsenic (As) and Hg from rice and crayfish consumption was the primary factor for non-carcinogenic risk, while Cd and As were the dominant contributors to the high carcinogenic risk of rice intake for adults and children, respectively. Based on the estimated probability distribution, the probabilities of the total cancer risk (TCR) of rice intake for children from RCS were lower than that from CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024938 | PMC |
http://dx.doi.org/10.3390/foods11081160 | DOI Listing |
Biochemistry (Mosc)
December 2024
Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
Food safety is one of the primary demands of modern society. Mycotoxins are toxic metabolites of food-contaminating fungi. Fungi enter the food chain by infecting crops and irreversibly contaminate them due to the structural stability of mycotoxins.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Desalination Technology Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia.
Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFBiol Res
January 2025
Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
Fluoride (F), as a natural element found in a wide range of sources such as water and certain foods, has been proven to be beneficial in preventing dental caries, but concerns have been raised regarding its potential deleterious effects on overall health. Sodium fluoride (NaF), another form of F, has the ability to accumulate in reproductive organs and interfere with hormonal regulation and oxidative stress pathways, contributing to reproductive toxicity. While the exact mechanisms of F-induced reproductive toxicity are not fully understood, this review aims to elucidate the mechanisms involved in testicular and ovarian injury.
View Article and Find Full Text PDFEnviron Res
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!