Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A prediction model of the welding process of Ti-6Al-4V titanium alloy was established by using the finite element method, which was used to evaluate the phase composition, residual stress and deformation of the welded joints of Ti-6Al-4V sheets with different processes (including tungsten inert gas welding, TIG, and laser beam welding, LBW). The Ti-6Al-4V structures of TIG welding and LBW are widely used in marine engineering. In order to quantitatively study the effects of different welding processes (including TIG welding and LBW) on the microstructure evolution, macro residual stress and deformation of Ti6Al4V titanium alloy sheets during welding, a unified prediction model considering solid-state phase transformation was established based on the ABAQUS subroutine. In this paper, LBW and TIG welding experiments of 1.6 mm thick Ti-6Al-4V titanium alloy sheets were designed. The microstructure distribution of the welded joints observed in the experiment was consistent with the phase composition predicted by the model, and the hardness measurement experiment could also verify the phase composition and proportion. From the residual stress measured by experiment and the residual stress and deformation calculated by finite element simulation of LBW and TIG weldments, it is concluded that the effect of phase transformation on residual stress is mainly in the weld area, which has an effect on the distribution of tensile and compressive stress in the weld area. The overall deformation of the welded joint is mainly related to the welding process, and the phase transformation only affects the local volume change of the weld seam. Importantly, the phase composition and residual stress, which are scalar fields, calculated by the established model can be introduced into the numerical analysis of structural fracture failure as input influence factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031599 | PMC |
http://dx.doi.org/10.3390/ma15082882 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!