The 9-12% Cr ferritic-martensitic heat-resistant steel is the main candidate structural material for the Lead-cooled Faster Reactor. The lower Gibbs free energy change of Si oxide can promote the formation of a stable oxide layer, which can improve the corrosion resistance of the material. Therefore, it is of great significance to study the effect of silicon (Si) on the corrosion resistance of T91 steel in lead-bismuth eutectic (LBE). The corrosion resistance of T91 steel with Si contents of 0.5 wt.%, 1.3 wt.%, and 2.0 wt.%, both in dynamic and static LBE at 550 °C, was investigated. The microstructure was analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM), while the oxide films were characterized by electron probe microanalysis (EPMA). Results show that the addition of Si is conducive to improving the corrosion resistance of T91 steel in LBE. T91 steel with high Si content has a thinner and more stable oxide film. The change of Si content can change the contact angle between the steel and LBE, and the contact angle is the largest when the Si content is 1.3 wt.%. The Si-rich oxide layer is usually located in the inner oxide layer, which promotes the formation of a Cr oxide layer located in the internal oxidation zone (IOZ). Si will not enter the precipitated phase, but only change the ferrite content. The oxidation model of T91 steel containing Si in LBE was also proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028533PMC
http://dx.doi.org/10.3390/ma15082862DOI Listing

Publication Analysis

Top Keywords

corrosion resistance
20
t91 steel
20
resistance t91
16
oxide layer
16
steel lbe
12
lead-bismuth eutectic
8
550 °c
8
stable oxide
8
wt% wt%
8
electron microscope
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!