Reinforced concrete is used in the construction of bridges, buildings, retaining walls, roads, and other engineered structures. Due to seismic activities, a lot of structures develop seismic cracks. The rehabilitation of such structures is necessary for public safety. The overall aim of this research study was to produce a high-performance hybrid fiber-reinforced concrete (HPHFRC) with enhanced properties as compared to plain high-performance concrete and high-performance fiber-reinforced concrete (HPFRC) for the rehabilitation of bridges and buildings. Kevlar fibers (KF) and glass fibers (GF) with lengths of 35 mm and 25 mm, respectively, were added and hybridized to 1.5% by mass of cement to create hybrid fiber-reinforced concrete mixes. Eight mixes were cast in total. The compressive strength ('), flexural strength (), splitting tensile strength (), and other mechanical properties, i.e., energy absorption and toughness index values, were enhanced in HPHFRC as compared to CM and HPFRC. It was found that the concrete hybridized with 0.75% KF and 0.75% GF (HF-G 0.75 K 0.75) had the most enhanced overall mechanical properties, illustrating its potential to be utilized in the rehabilitation of bridges and structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032813 | PMC |
http://dx.doi.org/10.3390/ma15082828 | DOI Listing |
Materials (Basel)
December 2024
College of Civil Engineering, Tongji University, Shanghai 200092, China.
In recent years, steel-fiber-reinforced concrete (SFRC) has been increasingly applied in shield tunnel engineering. However, most research on SFRC segments focuses on the load-bearing capacity, while the tunnel deformation is an equally critical indicator that decides if the tunnel can operate safely during service conditions. Therefore, it is essential to also study the stiffness variations in SFRC segments, which is closely connected to the serviceability limit state (SLS).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Civil Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea.
Corrosion in reinforced concrete (RC) structures has led to the increased adoption of non-corrosive materials, such as carbon fiber-reinforced polymers (CFRPs), as replacements for traditional steel rebar. However, ensuring the long-term reliability of CFRP grids under sustained stress is critical for achieving safe and effective designs. This study investigates the long-term tensile creep rupture behavior of CFRP grids to establish a design threshold for their tensile strength under sustained loading conditions in demanding structural applications.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
University Centre for Energy Efficient Buildings, Czech Technical University in Prague, 27343 Buštěhrad, Czech Republic.
This paper introduces cross-wound CFRP shear reinforcement of hollow HPC beams. The CFRP reinforcement was manufactured in the form of a square tubular mesh from carbon rovings oriented at ±45° from the longitudinal axis. The shear reinforcement was made in two variants from carbon yarns with linear densities of 1600 and 3700 tex.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Architectural Engineering, Gachon University, Seongnam-si 13120, Republic of Korea.
The absence of carbon fiber-reinforced rebar performance standards in Korea has limited its reliability. This study investigates the durability performance of carbon fiber-reinforced polymer rebar as an alternative to traditional steel reinforcement in concrete structures. Concrete beams reinforced with carbon fiber-reinforced polymer rebar were exposed to chloride environments for durations of 35 and 70 days and then subjected to bending tests to evaluate their durability.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Civil Engineering, Chang'an University, Xi'an 710061, China.
Fiber-reinforced polymer (FRP) composites are increasingly used in civil engineering for strengthening and repairing existing reinforced concrete (RC) members using externally bonded reinforcement (EBR) and near-surface mounted (NSM) methods. However, the fire performance of FRP-strengthened RC members has been an important issue that should be properly considered in the fire safety design process since FRP composites exhibit significant performance degradation at elevated temperatures. This paper aims to review studies on the fire performance of FRP-strengthened RC members based on the existing research results presented in the literature to provide a comprehensive understanding of key factors influencing the structural behavior of FRP-strengthened RC members under fire conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!