A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research and Application Validation of a Feature Wavelength Selection Method Based on Acousto-Optic Tunable Filter (AOTF) and Automatic Machine Learning (AutoML). | LitMetric

Near-infrared spectroscopy has been widely applied in various fields such as food analysis and agricultural testing. However, the conventional method of scanning the full spectrum of the sample and then invoking the model to analyze and predict results has a large amount of collected data, redundant information, slow acquisition speed, and high model complexity. This paper proposes a feature wavelength selection approach based on acousto-optical tunable filter (AOTF) spectroscopy and automatic machine learning (AutoML). Based on the programmable selection of sub nm center wavelengths achieved by the AOTF, it is capable of rapid acquisition of combinations of feature wavelengths of samples selected using AutoML algorithms, enabling the rapid output of target substance detection results in the field. The experimental setup was designed and application validation experiments were carried out to verify that the method could significantly reduce the number of NIR sampling points, increase the sampling speed, and improve the accuracy and predictability of NIR data models while simplifying the modelling process and broadening the application scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030996PMC
http://dx.doi.org/10.3390/ma15082826DOI Listing

Publication Analysis

Top Keywords

application validation
8
feature wavelength
8
wavelength selection
8
tunable filter
8
filter aotf
8
automatic machine
8
machine learning
8
learning automl
8
validation feature
4
selection method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!