Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The wires with chemical composition NiMnGaGdCo were prepared by hot-magnetic drawing and the microstructure evolution characteristics, martensitic transformation and MFIS process were investigated in detail, respectively. The results showed that a multiphase structure with γ phase and martensite was observed in samples when the magnetic field was 0 T to 0.2 T during the hot-magnetic drawing process. With the magnetic field increased to 0.5 T, due to the atomic diffusion by severe thermoplastic deformation and high external magnetic field, a single-phase structure with L1 type twin martensite was found in the sample. Moreover, an obvious increasing trend in martensitic transformation temperature in the sample was found by the enhancement of the magnetic field during the hot-magnetic drawing process. The highest phase transition temperature rose to about 600 °C when the magnetic field reached 0.5 T. Finally, the property of SME and MFIS in the sample can be enhanced by the magnetic field increasing during the hot-magnetic drawing process, excellent performance of SME was obtained at low total strain, and MFIS was achieved at 4.47% at a magnetic field of 8007 Oe in the sample in the 0.5 T magnetic field during the hot-magnetic drawing process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024593 | PMC |
http://dx.doi.org/10.3390/ma15082785 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!