The paper presents results of testing the resistance of chain wheels made of alloyed austempered ductile iron (ADI) with various content of retained austenite and subjected to shot peening, to the dynamic and abrasive wear by solid particles. The impact of the additional environmental factor-external dynamic forces-accompanying the operation of the chain wheels in the presence of the quartz particles has a synergistic effect on the abrasive wear in the contact area between the wheels and the chain links for all the considered variants, except for the ADI with the structure of the upper ausferrite. Based on the results obtained, it was found that the abrasive wear by solid particles increased and that the hardness of the surface layer of the chain wheels subjected to shot peening decreased. The relative increase in the wear ΔV/δ, representing the share of the additional dynamic force in the process of wear, was in the range of 16-40% for the group of tested cast iron ADI not subjected to shot peening, while for the shot peened-in the range of 16-64%. Demonstration of phase changes during the operation of chain wheels and the change in their intensity depending on the combination of environmental factors is the work novelty. In the opinion of the authors, the presented results will be of great practical importance as they will allow to increase the knowledge on the proper selection of ADI cast iron for environmental conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029733PMC
http://dx.doi.org/10.3390/ma15082709DOI Listing

Publication Analysis

Top Keywords

abrasive wear
16
chain wheels
16
subjected shot
12
shot peening
12
austempered ductile
8
ductile iron
8
iron adi
8
wear solid
8
solid particles
8
operation chain
8

Similar Publications

Superhydrophobic surfaces have been demonstrated to exhibit excellent anti-icing effects, but they are susceptible to the loss of ice repellency as a result of external impacts. This paper proposes a novel bionic armour structure that combines an armour structure with an arrowroot bionic structure. A composite method combining laser etching and chemical modification was employed to achieve superhydrophobicity on the surface of the aluminium alloy.

View Article and Find Full Text PDF

Introducing PES porous membrane to establish bionic autocrine channels: A lubricating, anti-wear antifouling coating.

Mar Pollut Bull

January 2025

Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, PR China; Dalian Key Laboratory of Internal Combustion Engine Tribology and Reliability Engineering, Dalian 116026, PR China. Electronic address:

As a global challenge, marine biofouling is causing serious economic losses and adverse ecological impacts. In recent years, a variety of promising and environmentally friendly anti-fouling strategies have emerged, among which the excellent anti-fouling performance of bionic autocrine coatings has been recognized. However, bionic autocrine coatings still suffer from uncontrollable secretion behavior, poor mechanical stability, and poor abrasion resistance.

View Article and Find Full Text PDF

Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics.

J Hazard Mater

January 2025

School of Textile Science and Engineering, Jiangnan University, Wuxi 214021, China. Electronic address:

Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) release from textiles is a source of human exposure, but the mechanisms behind this release remain insufficiently studied. This research investigates the release and transport mechanisms of PFAS in outdoor jacket fabrics treated with a short side-chain fluorinated polymers (CF-SFPs) for durable water repellency (DWR). PA-based and PET-based fabrics were exposed to outdoor conditions and subjected to accelerated aging, followed by abrasion, washing, and drying experiments to simulate wear and degradation.

View Article and Find Full Text PDF

Background Toothbrush manufacturers commonly use bristle materials such as nylon, polybutylene terephthalate, polypropylene, polyethylene terephthalate, boar hair, bamboo, carbon fiber, silicone, polylactic acid, or their modifications such as Curen. Nylon filaments have long been demonstrated to be durable and are widely used, but not much is known regarding the performance of Curen filaments compared to nylon filaments. This in vitro study compared the stiffness, abrasion potential, abrasion resistance, and bristle surface changes of Curen and nylon filaments.

View Article and Find Full Text PDF

Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

January 2025

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!