A Systematic Review on the Link between Animal Welfare and Antimicrobial Use in Captive Animals.

Animals (Basel)

Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA.

Published: April 2022

This systematic review aimed to assess the link between animal welfare and antimicrobial use (AMU) in captive species (i.e., farm, zoo, companion, and laboratory animals) and its effect. Studies empirically examining the effect of welfare on AMU or vice versa were included. Studies in wild animals were excluded. A total of 6610 studies were retrieved from PubMed and Web of Science in April 2021. Despite finding several papers superficially invoking the link between welfare and AMU, most did not delve into the characteristics of this link, leading to a small number of publications retained (n = 17). The majority (76%) of the publications were published from 2017-2021. Sixteen were on farm animals, and one publication was on laboratory animals. Most of the studies (82%) looked at the effect of animal welfare on AMU. The body of research retained suggests that, in farm animals, better animal welfare often leads to lower AMU, as was hypothesised, and that, generally, poor welfare is associated with higher AMU. Additionally, AMU restrictions in organic systems may prevent animals from receiving treatment when necessary. Limitations of this study include focusing only on empirical research and excluding non-peer reviewed evidence. More research is needed to corroborate these findings, especially on the link between animal welfare and AMU in other captive species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9032364PMC
http://dx.doi.org/10.3390/ani12081025DOI Listing

Publication Analysis

Top Keywords

animal welfare
20
welfare amu
16
link animal
12
systematic review
8
welfare
8
welfare antimicrobial
8
amu
8
amu captive
8
captive species
8
laboratory animals
8

Similar Publications

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

Towards a unified approach in managing resistance to vaccines, drugs, and pesticides.

Biol Rev Camb Philos Soc

January 2025

Biology Department, Queens College, City University of New York, 149th St, Flushing, 11367, New York, USA.

Everywhere, pests and pathogens evolve resistance to our control efforts, impairing human health and welfare. Developing sustainable solutions to this problem requires working with evolved immune and ecological systems, rather than against these evolutionary forces. We advocate a transdisciplinary approach to resistance based on an evolutionary foundation informed by the concepts of integrated pest management and One Health.

View Article and Find Full Text PDF

Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!