Ocular Microbiome in a Group of Clinically Healthy Horses.

Animals (Basel)

Laboratorio de Microbiología Clínica y Microbioma, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370134, Chile.

Published: April 2022

The ocular microbiome in horses is poorly described compared to other species, and most of the information available in the literature is based on traditional techniques, which has limited the depth of the knowledge on the subject. The objective of this study was to characterize and predict the metabolic pathways of the ocular microbiome of a group of healthy horses. Conjunctival swabs were obtained from both eyes of 14 horses, and DNA extraction was performed from the swabs, followed by next generation sequencing and bioinformatics analyses employing DADA2 and PICRUSt2. A total of 17 phyla were identified, of which () was the most abundant (59.88%), followed by () (22.44%) and () (16.39%), totaling an average of 98.72% of the communities. Similarly, of the 278 genera identified, , , , , and were present in more than 5% of the samples analyzed. Both and showed great heterogeneity within the samples. The most abundant inferred metabolic functions were related to vital functions for bacteria such as aerobic respiration, amino acid, and lipid biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9028004PMC
http://dx.doi.org/10.3390/ani12080943DOI Listing

Publication Analysis

Top Keywords

ocular microbiome
12
microbiome group
8
healthy horses
8
group clinically
4
clinically healthy
4
horses
4
horses ocular
4
microbiome horses
4
horses described
4
described compared
4

Similar Publications

Ocular Rosacea: An Updated Review.

Cornea

January 2025

Instituto de Oftalmologia Fundacion Conde de Valenciana IAP, Mexico City, Mexico.

Purpose: Ocular rosacea is a chronic inflammatory disorder affecting the ocular surface, often associated with cutaneous rosacea. This review aims to explore its pathogenesis, treatment approaches, and future directions for management.

Methods: A review of current literature on the pathophysiology, clinical features, and treatment strategies of ocular rosacea in adults and children (pediatric blepharokeratoconjunctivitis) was conducted.

View Article and Find Full Text PDF

Purpose: To characterize the ocular surface microbiota in regular contact lens wearers with dry eyes and assess the effectiveness of reducing bacterial load using a liposomal ozonated oil solution.

Methods: This prospective, longitudinal, controlled study randomized subjects into two groups. Group A (45 subjects) received hydroxypropylmethylcellulose (HPMC, Artific®), while Group B (41 subjects) received ozonated sunflower seed oil with soybean phospholipids (OSSO, Ozonest®).

View Article and Find Full Text PDF

Background: Although agricultural health has gained importance, to date, much of the existing research relies on traditional epidemiological approaches that often face limitations related to sample size, geographic scope, temporal coverage, and the range of health events examined. To address these challenges, a complementary approach involves leveraging and reusing data beyond its original purpose. Administrative health databases (AHDs) are increasingly reused in population-based research and digital public health, especially for populations such as farmers, who face distinct environmental risks.

View Article and Find Full Text PDF

Dry eye disease (DED) is a multifactorial condition with complex and incompletely understood molecular mechanisms. Advances in multi-omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and microbiomics, have provided new insights into the pathophysiology of DED. Genomic analyses have identified key genetic variants linked to immune regulation and lacrimal gland function.

View Article and Find Full Text PDF

NRP1 instructs IL-17-producing ILC3s to drive colitis progression.

Cell Mol Immunol

January 2025

Department of oncology, The Second Hospital of Tianjin Medical University; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases; Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Group 3 innate lymphoid cells (ILC3s) control tissue homeostasis and orchestrate mucosal inflammation; however, the precise mechanisms governing ILC3 activity are fully understood. Here, we identified the transmembrane protein neuropilin-1 (NRP1) as a positive regulator of interleukin (IL)-17-producing ILC3s in the intestine. NRP1 was markedly upregulated in intestinal mucosal biopsies from patients with inflammatory bowel disease (IBD) compared with healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!