A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases. | LitMetric

Color Dependence Analysis in a CNN-Based Computer-Aided Diagnosis System for Middle and External Ear Diseases.

Diagnostics (Basel)

Department of Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390382, Chile.

Published: April 2022

Artificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031192PMC
http://dx.doi.org/10.3390/diagnostics12040917DOI Listing

Publication Analysis

Top Keywords

middle external
12
external ear
12
computer-aided diagnosis
8
diagnosis system
8
otitis media
8
color dependence
4
dependence analysis
4
analysis cnn-based
4
cnn-based computer-aided
4
diagnosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!