An increase in atmospheric greenhouse gases necessitates the use of species distribution models (SDMs) in modeling suitable habitats and projecting the impact of climate change on the future range shifts of the species. The present study is based on the BIOMOD ensemble approach to map the currently suitable habitats and predict the impact of climate change on the niche shift of Valeriana wallichii. We also studied its niche dynamics using the ecospat package in R software. Values of the area under curve (AUC) and true skill statistics (TSS) were highly significant (>0.9), which shows that the model has run better. From 19 different bioclimatic variables, only 8 were retained after correlation, among which bio_17 (precipitation of driest quarter), bio_1 (annual mean temperature), and bio_12 (annual mean precipitation) received the highest gain. Under future climate change, the suitable habitats will be significantly contracted by −94% (under representative concentration pathway RCP 8.5 for 2070) and −80.22% (under RCP 8.5 for 2050). There is a slight increase in habitat suitability by +16.69% (RCP 4.5 for 2050) and +8.9% (RCP 8.5 for 2050) under future climate change scenarios. The equivalency and similarity tests of niche dynamics show that the habitat suitability for current and future climatic scenarios is comparable but not identical. Principal Component Analysis (PCA) analysis shows that climatic conditions will be severely affected between current and future scenarios. From this study, we conclude that the habitats of Valeriana wallichii are highly vulnerable to climate shifts. This study can be used to alleviate the threat to this plant by documenting the unexplored populations, restoring the degraded habitats through rewilding, and launching species recovery plans in the natural habitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024540PMC
http://dx.doi.org/10.3390/biology11040498DOI Listing

Publication Analysis

Top Keywords

climate change
20
habitat suitability
12
niche dynamics
12
suitable habitats
12
rcp 2050
12
impact climate
8
valeriana wallichii
8
future climate
8
current future
8
climate
6

Similar Publications

European agrifood and forestry education for a sustainable future - Gap analysis from an informatics approach.

Open Res Eur

October 2024

Department of Process and Life Science Engineering, Division of Food and Pharma, LTH, Faculty of Engineering, Lund University, Lund, Skåne County, SE-221 00, Sweden.

Background: The NextFood Project ( www.nextfood-project.eu) started work in 2018 to identify 'Categories of Skills' that students should be equipped with to address the upcoming global challenges within agrifood and forestry disciplines, and involved concepts such as sustainability, technological adaptation and networking.

View Article and Find Full Text PDF

A review of sustainable cattle genetic improvement in the Peruvian Highlands.

Vet Anim Sci

March 2025

Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Sede Central: Av. La Molina 1981, La Molina, Lima 15024, Perú.

Cattle breeding in the highlands of Peru is an important economic activity at the level of the entire rural extension, because it serves as an economic reserve for rural families and forms an integral part of the agricultural producer's culture. This review aimed to provide a literature- and research-based approach to the fundamental aspects of a national genetic improvement plan, emphasising the efficacy of using a bovine germplasm of high genetic quality as an initiative to implement genetic improvement programmes. The concepts to be implemented in national livestock farming include high yield, feed conversion efficiency, and minimum greenhouse gas emissions.

View Article and Find Full Text PDF

Drought-induced changes in floral traits can disrupt plant-pollinator interactions, influencing pollination and reproductive success. These phenotypic changes likely also affect natural selection on floral traits, yet phenotypic selection studies manipulating drought remain rare. We studied how drought impacts selection to understand the potential evolutionary consequences of drought on floral traits.

View Article and Find Full Text PDF

Context: There are urgent calls to transition society to more sustainable trajectories, at scales ranging from local to global. Landscape sustainability (LS), or the capacity for landscapes to provide equitable access to ecosystem services essential for human wellbeing for both current and future generations, provides an operational approach to monitor these transitions. However, the complexity of landscapes complicates how and what to consider when assessing LS.

View Article and Find Full Text PDF

Over the last few decades, climate change in Svalbard (European Arctic) has led to the emergence and growth of periglacial coastal lagoons in the place of retreating glaciers. In these emerging water bodies, new ecosystems are formed, consisting of elements presumably entering the lagoon from the melting glacier, the surrounding tundra water bodies and the coastal ocean. The data presented here were collected from an emerging lagoon in the western region of Spitsbergen, Svalbard, situated between the retreating Eidembreen Glacier and Eidembukta Bay in 2022-2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!