AI Article Synopsis

  • The pathogenesis of multiple sclerosis (MS) involves the destruction of myelin sheaths and oligodendrocytes in the central nervous system, leading to challenges in remyelination.
  • Research indicates that epidermal growth factor (EGF), normal prions, and cobalamin are essential for myelination and are significantly altered in MS patients, with EGF and prion levels reduced while cobalamin levels are inconsistent.
  • These findings suggest a reassessment of MS pathogenesis, highlighting that factors like EGF may play limited roles in immune responses but are crucial for myelin repair processes.

Article Abstract

The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9026986PMC
http://dx.doi.org/10.3390/biomedicines10040815DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
8
central nervous
8
nervous system
8
remyelination failure
8
myelin sheaths
8
egf normal
8
decreased cns
8
cns
5
newly identified
4
identified deficiencies
4

Similar Publications

Chemoproteomic Profiling of Clickable Fumarate Probes for Target Identification and Mechanism of Action Studies.

ACS Chem Biol

January 2025

Biogen, Chemical Biology & Proteomics, 225 Binney Street, Cambridge, Massachusetts 02142, United States.

Dimethyl fumarate (DMF) is an established oral therapy for multiple sclerosis worldwide. Although the clinical efficacy of these fumarate esters has been extensively investigated, the mode of action and pharmacokinetics of fumarates have not been fully elucidated due to their broad-spectrum reactivity and complex metabolism in vivo. To better understand the mechanism of action of DMF and its active metabolite, monomethyl fumarate (MMF), we designed and utilized clickable probes to visualize and enrich probe-modified proteins.

View Article and Find Full Text PDF

Background: People with the chronic disease Multiple Sclerosis are subjected to different degrees of profound uncertainty. Uncertainty has been linked to adverse psychological effects such as feelings of heightened vulnerability, avoidance of decision-making, fear, worry, anxiety disorders, and even depression. Research into Multiple Sclerosis has a predominant focus on the scientific, practical, and psychosocial issues of uncertainty.

View Article and Find Full Text PDF

Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.

Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.

View Article and Find Full Text PDF

Purpose: To synthesize evidence regarding psychometric properties of the Mini-Balance Evaluation Systems Test (Mini-BESTest) in assessing postural control.

Method: Six databases were searched until October 15th, 2024. Two authors independently assessed the methodological quality and results of studies using the COSMIN checklist and Terweés criteria.

View Article and Find Full Text PDF

Wave-CAIPI Multiparameter MR Imaging in Neurology.

NMR Biomed

March 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!