Volumetric muscle loss (VML) is the traumatic/surgical loss of skeletal muscle, causing aesthetic damage and functional impairment. Suboptimal current surgical treatments are driving research towards the development of optimised regenerative therapies. The grafting of bioengineered scaffolds derived from decellularized skeletal muscle may be a valid option to promote structural and functional healing. In this work, a cellular human diaphragm was considered as a scaffold material for VML treatment. Decellularization occurred through four detergent-enzymatic protocols involving (1) sodium dodecyl sulfate (SDS), (2) SDS + Tergitol, (3) sodium deoxycholate, and (4) Tergitol. After decellularization, cells, DNA (≤50 ng/mg of tissue), and muscle fibres were efficiently removed, with the preservation of collagen/elastin and 60%-70% of the glycosaminoglycan component. The detergent-enzymatic treatments did not affect the expression of specific extracellular matrix markers (Collagen I and IV, Laminin), while causing the loss of HLA-DR expression to produce non-immunogenic grafts. Adipose-derived stem cells grown by indirect co-culture with decellularized samples maintained 80%-90% viability, demonstrating the biosafety of the scaffolds. Overall, the tested protocols were quite equivalent, with the patches treated by SDS + Tergitol showing better collagen preservation. After subcutaneous implant in Balb/c mice, these acellular diaphragmatic grafts did not elicit a severe immune reaction, integrating with the host tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031975 | PMC |
http://dx.doi.org/10.3390/biomedicines10040739 | DOI Listing |
Cell Stem Cell
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:
Tissue-engineered vascular conduits (TEVCs) are a promising blood vessel replacement. In a recent publication in Cell Stem Cell, Park et al. developed TEVCs comprised of decellularized human umbilical arteries lined with shear-trained, human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) that resisted thrombosis and exhibited patency upon grafting into the rat inferior vena cava (IVC).
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for 3D Organ Printing and Stem cells (COPS), Pohang University of Science and Technology (POSTECH), Pohang, 37666, Republic of Korea.
Despite significant research progress, tumor heterogeneity remains elusive, and its complexity poses a barrier to anticancer drug discovery and cancer treatment. Response to the same drug varies across patients, and the timing of treatment is an important factor in determining prognosis. Therefore, development of patient-specific preclinical models that can predict a patient's drug response within a short period is imperative.
View Article and Find Full Text PDFBiomed Mater
January 2025
Lab of Stem Cells and Tissue Engineering, State Key Lab of Biotherapy, Sichuan University West China Hospital, No.1, Keyuan 4th Rd, High-Tech District, Chengdu, 610041, CHINA.
The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, China Medical University Hospital, 2 Hsueh‑Shih Road, Taichung City, 40402, Taiwan, ROC.
Treating metastatic brain tumors remains a significant challenge. This study introduces and applies the Patient-Derived Tumor Spheroid (PDTS) system, an ex vivo model for precision drug testing on metastatic brain tumor. The PDTS system utilizes a decellularized extracellular matrix (dECM) derived from adipose tissue, combined with the tumor cells, to form tumor spheroids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!