The microaerophile , the main microaerophile responsible for the development of dental plaque, has a single cambialistic superoxide dismutase (SOD) for its protection against reactive oxygen species. In order to discover novel inhibitors of SOD, possibly interfering with the biofilm formation by this pathogen, a virtual screening study was realised using the available 3D-structure of SOD. Among the selected molecules, compound was capable of inhibiting SOD with an IC value of 159 µM. Its inhibition power was affected by the Fe/Mn ratio in the active site of SOD. Furthermore, also inhibited the activity of other SODs. Gel-filtration of SOD in the presence of showed that the compound provoked the dissociation of the SOD homodimer in two monomers, thus compromising the catalytic activity of the enzyme. A docking model, showing the binding mode of at the dimer interface of SOD, is presented. Cell viability of the fibroblast cell line BJ5-ta was not affected up to 100 µM . A preliminary lead optimization program allowed the identification of one derivative, , endowed with a 2.5-fold improved inhibition power. Interestingly, below this concentration, planktonic growth and biofilm formation of cultures were inhibited by , and even more by its derivative, thus opening the perspective of future drug design studies to fight against dental caries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9029323PMC
http://dx.doi.org/10.3390/antiox11040785DOI Listing

Publication Analysis

Top Keywords

novel inhibitors
8
superoxide dismutase
8
sod
8
biofilm formation
8
inhibition power
8
silico identification
4
identification novel
4
inhibitors targeting
4
targeting homodimeric
4
homodimeric interface
4

Similar Publications

Background: Dermatomyositis is a chronic inflammatory condition affecting muscles and skin, often associated with an increased risk of cancer. Specific autoantibodies, including anti-TIF1 (Transcription Intermediary Factor 1), have been linked to this risk. We present a case of dermatomyositis in a male patient positive for anti-TIF1 antibodies, subsequently diagnosed with squamous cell carcinoma of the tonsil, a novel association not previously documented.

View Article and Find Full Text PDF

The translational potential of epigenetic modulatory bioactive phytochemicals as adjuvant therapy against cancer.

Int Rev Cell Mol Biol

January 2025

Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

In preclinical studies, bioactive phytochemicals have shown enormous potential therapeutic efficacy against various human malignancies. These natural compounds have been shown to possess an inherent potential to alter the molecular signaling pathways and epigenetic modulatory activity involved in multiple physiological functions. Recently, epigenetic therapy has emerged as an important therapeutic modality due to the reversible nature of epigenetic alterations.

View Article and Find Full Text PDF

Laminin-dystroglycan mediated ferroptosis in hemorrhagic shock and reperfusion induced-cognitive impairment through AMPK/Nrf2.

Free Radic Biol Med

January 2025

Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei City, Anhui Province, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China. Electronic address:

Hemorrhagic shock and reperfusion (HSR) is the main cause of death following trauma. Cognitive impairment may persist after successful resuscitation from hemorrhagic shock, but the mechanisms remain elusive. This study demonstrated the presence of ferroptosis in an in vitro model of oxygen-glucose deprivation and reoxygenation (OGD/R) in HT22 neurons, and also in a murine model of HSR using 3-month-old C57BL/6 mice.

View Article and Find Full Text PDF

Effects of in vitro cytochalasin D and hypoxia on mitochondrial energetics and biogenesis, cell signal status and actin/tubulin/Hsp/MMP entity in air-breathing fish heart.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; Sastrajeevan Integrative Project, Centre for Integrative Stress and Ease-cRISE, Gregorian College of Advanced Studies, Sreekariyam, Thiruvananthapuram 695017, Kerala, India. Electronic address:

The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts.

View Article and Find Full Text PDF

Urchin-like magnetic nanoparticles loaded with type X collagen siRNA and Stattic to treat triple negative breast cancer under rotating magnetic field like an "enchanted micro-scalpel".

Int J Biol Macromol

January 2025

Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710100, Shaanxi, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, PR China. Electronic address:

Magnetic nanoparticles effectively target drug delivery, contrast agents, biosensors, and more. Urchin-like magnetic nanoparticles (UMN) with abundant spike-like structures exhibit superior magneto-mechanical force to destroy tumor cells compared with other shapes of magnetic nanoparticles. However, when cell contents are released from tumor cells induced by magneto-mechanical force, they can act on surrounding tumor cells to facilitate tumor development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!