Vascular smooth muscle cell (VSMC) proliferation and migration play key roles in the progression of atherosclerosis and restenosis. A variety of ginsenosides exert various cardiovascular benefits. However, whether and how ginsenoside Rh1 (Rh1) inhibits VSMC dysfunction remain unclear. Here, we investigated the inhibitory effects of Rh1 on rat aortic smooth muscle cell (RASMC) migration and proliferation induced by angiotensin II (Ang II) and the underlying mechanisms. Cell proliferation and migration were evaluated using sulforhodamine B and wound-healing assay. The molecular mechanisms were investigated using Western blotting, quantitative reverse-transcription polymerase chain reaction analysis, immunofluorescence staining, and luciferase assay. Reactive oxygen species (ROS) production was measured using dihydroethidium and MitoSOX staining. We found that Rh1 dose-dependently suppressed Ang II-induced cell proliferation and migration. Concomitantly, Ang II increased protein levels of osteopontin, vimentin, MMP2, MMP9, PCNA, and cyclin D1, while these were reduced by Rh1 pretreatment. Notably, Ang II enhanced both the protein expression and promoter activity of KLF4, a key regulator of phenotypic switching, whereas pretreatment with Rh1 reversed these effects. Mechanistically, the effects of Rh1 on VSMC proliferation and migration were found to be associated with inhibition of ERK1/2/p90RSK signaling. Furthermore, the inhibitory effects of Rh1 were accompanied by inhibition of ROS production. In conclusion, Rh1 inhibited the Ang II-induced migration and proliferation of RASMCs by suppressing the ROS-mediated ERK1/2/p90RSK signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9030830 | PMC |
http://dx.doi.org/10.3390/antiox11040643 | DOI Listing |
J Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFSci Rep
January 2025
School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China.
Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.
View Article and Find Full Text PDFAutoimmunity
December 2025
Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!