Isolated from Organic Laying Hens Reveal a High Level of Antimicrobial Resistance despite No Antimicrobial Treatments.

Antibiotics (Basel)

Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.

Published: March 2022

The present study investigated the resistance characteristics of isolates originating from 18 organic laying hen flocks. was isolated from different organs at three different time points, resulting in 209 isolates. The antibiotic susceptibility was determined by applying a microdilution assay. General, a high resistance rate was found. The antibiotic susceptibility was independent from the presence of pathological lesions, the isolation site, or the affiliation to a pathogenic serogroup. The majority of the isolates proved to be multi-drug-resistant (95.70%), of which 36.84% could be categorized as extensively drug-resistant. All isolates were resistant to oxacillin and tylosin. Resistance rates to amoxicillin (67.94%), cefoxitin (55.98%), ceftazidime (82.30%), colistin (73.68%), nalidixic acid (91.87%), streptomycin (42.58%), tetracycline (53.59%), and sulfamethoxazole (95.22%) were high. None of the isolates revealed pan-drug-resistance. A great heterogeneity of resistance profiles was found between isolates within a flock or from different organs of the same bird, even when isolates originated from the same organ. An increase in antimicrobial resistance was found to be correlated with the age of the birds. The fact, that no antibiotic treatment was applied except in two flocks, indicates that resistant bacteria circulating in the environment pose a threat to organic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9027956PMC
http://dx.doi.org/10.3390/antibiotics11040467DOI Listing

Publication Analysis

Top Keywords

organic laying
8
antimicrobial resistance
8
antibiotic susceptibility
8
isolates
7
resistance
6
isolated organic
4
laying hens
4
hens reveal
4
reveal high
4
high level
4

Similar Publications

Current challenges in tissue engineering include creation of extracellular environments that support and interact with cells using biochemical, mechanical, and structural cues. Spatial control over these cues is currently limited due to a lack of suitable fabrication techniques. This study introduces Xolography, an emerging dual-color light-sheet volumetric printing technology, to achieve control over structural and mechanical features for hydrogel-based photoresins at micro- to macroscale while printing within minutes.

View Article and Find Full Text PDF

Sustainable soil management is essential to conserve soil biodiversity and its provision of vital ecosystem services. The EU Biodiversity Strategy for 2030 highlights the key role of organic farming and land protection in halting biodiversity loss, including edaphic biodiversity. To assess the effectiveness of the proposed measures, a 1-year study was conducted in spring 2022 to determine the soil quality of three organically managed agroecosystems and four sites for each: arable lands, olive groves, and vineyards in the Conero Park, using the arthropod-based Biological Soil Quality Index (QBS-ar) and also considering soil chemical-physical characteristics.

View Article and Find Full Text PDF

[The role of volatile organic compounds in plant-insect communication].

Biol Aujourdhui

January 2025

Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.

Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).

View Article and Find Full Text PDF

Online monitoring of water quality in industrial wastewater treatment process based on near-infrared spectroscopy.

Water Res

January 2025

NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong, Jinan 250012, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, Jinan 250021, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Shandong, Jinan 250012, China; Shandong Engineering Research Center for Transdermal Drug Delivery Systems, Shandong, Jinan 250098, China. Electronic address:

Water quality monitoring is one of the critical aspects of industrial wastewater treatment, which is important for checking the treatment effect, optimizing the treatment technology and ensuring that the water quality meets the standard. Chemical oxygen demand (COD) is a key indicator for monitoring water quality, which reflects the degree of organic matter pollution in water bodies. However, the current methods for determining COD values have drawbacks such as slow speed and complicated operation, which hardly meet the demand of online monitoring.

View Article and Find Full Text PDF

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of chromium propionate as zootechnical feed additive for all growing poultry species. The safety and efficacy of chromium propionate has been assessed previously in 2021 by the Panel and it was concluded that the additive is considered safe for chickens for fattening and chickens reared for laying/breeding at the proposed use level 0.2-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!