The multiplex PCR is a powerful and efficient tool that was widely used during the COVID-19 pandemic to diagnose SARS-CoV-2 infections and that has applications for bacterial identification, as well as determining bacterial resistance to antibiotics. Therefore, this study aimed to determine the usability of multiplex PCR, especially in patients self-medicated with antibiotics, where bacterial cultures often give false-negative results. A cross-sectional study was developed in two COVID-19 units, where 489 eligible patients were included as antibiotic takers and non-antibiotic takers. Antibiotic takers used mostly over-the-counter medication; they suffered significantly more chronic respiratory conditions and were self-medicated most often with cephalosporins (41.4%), macrolide (23.2%), and penicillin (19.7%). The disease severity in these patients was significantly higher than in non-antibiotic takers, and bacterial superinfections were the most common finding in the same group (63.6%). Antibiotic takers had longer hospital and ICU admissions, although the mortality rate was not significantly higher than in non-antibiotic takers. The most common bacteria involved in secondary infections were (22.2%) (27.8%), and (25.0%). Patients self-medicating with antibiotics had significantly higher rates of multidrug resistance. The multiplex PCR test was more accurate in identifying multidrug resistance and resulted in a quicker initiation of therapeutic antibiotics compared with instances where a bacterial culture was initially performed, with an average of 26.8 h vs. 40.4 h, respectively. The hospital stay was also significantly shorter by an average of 2.5 days when PCR was used as an initial assessment tool for secondary bacterial infections. When adjusted for age, COVID-19 severity, and pulmonary disease, over-the-counter use of antibiotics represented a significant independent risk factor for a prolonged hospitalization (AOR = 1.21). Similar findings were observed for smoking status (AOR = 1.44), bacterial superinfection (AOR = 1.52), performing only a conventional bacterial culture (AOR = 1.17), and a duration of more than 48 h for bacterial sampling from the time of hospital admission (AOR = 1.36). Multiplex PCR may be a very effective method for diagnosing secondary bacterial infections in COVID-19 individuals self-medicating with antibiotics. Utilizing this strategy as an initial screen in COVID-19 patients who exhibit signs of sepsis and clinical deterioration will result in a faster recovery time and a shorter period of hospitalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025156PMC
http://dx.doi.org/10.3390/antibiotics11040437DOI Listing

Publication Analysis

Top Keywords

multiplex pcr
20
bacterial infections
12
antibiotic takers
12
non-antibiotic takers
12
bacterial
11
infections covid-19
8
covid-19 patients
8
patients self-medicated
8
self-medicated antibiotics
8
higher non-antibiotic
8

Similar Publications

Strawberry viruses are significant pathogenic agents in strawberry. The development and application of efficient virus detection technology can effectively reduce the economic losses incurred by virus diseases for strawberry cultivators. In order to rapidly identify strawberry virus species and prevent the spread of virus disease, a multiplex reverse transcription polymerase chain reaction system was established for the simultaneous detection and identification of strawberry mild yellow edge virus (SMYEV), strawberry vein banding virus (SVBV), strawberry mottle virus (SMoV), strawberry polerovirus 1 (SPV-1), strawberry pallidosis-associated virus (SPaV), and strawberry crinivirus 4 (SCrV-4).

View Article and Find Full Text PDF

The First Report of -1-Carrying , Isolated from a Clinical Sample in the North-East of Romania.

Microorganisms

November 2024

Department of Microbiology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania.

Colistin resistance poses a significant clinical challenge, particularly in Gram-negative bacteria. This study investigates the occurrence of plasmid-mediated colistin resistance among isolates (, , and spp.) and non-fermentative rods ( and ).

View Article and Find Full Text PDF

One-Step Multiplex Real-Time Fluorescent Quantitative Reverse Transcription PCR for Simultaneous Detection of Four Waterfowl Viruses.

Microorganisms

November 2024

Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi Grass Station, Guangxi University, Nanning 530004, China.

Duck Tembusu virus (DTMUV), duck hepatitis virus (DHV), Muscovy duck reovirus (MDRV), and Muscovy duck parvovirus (MDPV) represent four emergent infectious diseases impacting waterfowl, which can be challenging to differentiate due to overlapping clinical signs. In response to this, we have developed a one-step multiplex real-time fluorescence quantitative reverse transcription PCR (qRT-PCR) assay, capable of simultaneously detecting DTMUV, DHV, MDRV, and MDPV. This method exhibits high specificity, avoiding cross-reactivity with other viruses such as Fowl adenoviruses (FADV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Haemophilus paragallinarum (Hpg), duck circovirus (DUCV), goose astrovirus (GoAstV), and mycoplasma gallisepticum (MG).

View Article and Find Full Text PDF

BLV-CoCoMo Dual qPCR Assay Targeting LTR Region for Quantifying Bovine Leukemia Virus: Comparison with Multiplex Real-Time qPCR Assay Targeting Region.

Pathogens

December 2024

Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

The proviral load (PVL) of the bovine leukemia virus (BLV) is a useful index for estimating disease progression and transmission risk. Real-time quantitative PCR techniques are widely used for PVL quantification. We previously developed a dual-target detection method, the "Liquid Dual-CoCoMo assay", that uses the coordination of common motif (CoCoMo) degenerate primers.

View Article and Find Full Text PDF

Development of Multiplex Assays for the Identification of Zoonotic Species.

Pathogens

December 2024

Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.

More than one-hundred species that affect animals and humans have been described, eight of which have been associated with emerging and underdiagnosed zoonoses. Most diagnostic studies in humans have used serology or molecular assays based on the 18S rRNA gene. Because the 18S rRNA gene is highly conserved, obtaining an accurate diagnosis at the species level is difficult, particularly when the amplified DNA fragment is small.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!