Rational design of a fluorescent probe for specific sensing of hydrogen peroxide/glucose and intracellular imaging applications.

Spectrochim Acta A Mol Biomol Spectrosc

Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China. Electronic address:

Published: September 2022

A new type of dye with advantages of high selectivity and sensitivity is formed by using the strategy of hybridization between the luminescent unit and recognition unit. Based on this strategy, we exploit a novel dye bonding the benzopyrylium salt as a luminescent unit and phenylboronate group as a response site, which is served as a fluorescent probe 1 for specific recognition of hydrogen peroxide in biological application. Probe 1 employs a unique recognition switch, phenylboronate unit, to"turn-on"a highly specific and rapid fluorescence response toward hydrogen peroxide combined with the 1,6-rearrangement elimination reaction strategy. Meanwhile, probe 1 has the ability to glucose assay by taking advantage of glucose oxidase/glucose enzymatic reaction. What's more, the probe 1 is capable of tracking endogenous hydrogen peroxide in living cells and intracellular imaging. Therefore, the newly developed bioprobe 1 is expected to be used to monitor hydrogen peroxide and glucose levels in complex organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121254DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
16
fluorescent probe
8
probe specific
8
intracellular imaging
8
luminescent unit
8
probe
5
hydrogen
5
rational design
4
design fluorescent
4
specific sensing
4

Similar Publications

Hydrogen peroxide (HO) is a critical signaling molecule with significant roles in various physiological processes in plants. Understanding its regulation through in situ monitoring could offer deeper insights into plant responses and stress mechanisms. In this study, we developed a microneedle electrochemical sensor to monitor HO in situ, offering deeper insights into plant stress responses.

View Article and Find Full Text PDF

To investigate the effect of concentrated growth factor (CGF) on the biological performance of human dental pulp stem cells (hDPSCs) under oxidative stress status induced by hydrogen peroxide (HO). The hDPSCs were isolated by using tissue block separation method from healthy permanent teeth extracted for orthodontic reason. hDPSCs surface markers CD34, CD45, CD90 and CD105 were detected by flow cytometry.

View Article and Find Full Text PDF

LC-MS/MS based analytical strategies for the detection of lipid peroxidation products in biological matrices.

J Pharm Biomed Anal

January 2025

Department of Bioscience and Technology for Food, Agriculture and Environmental, University of Teramo, Via Renato Balzarini 1, Teramo 64100, Italy. Electronic address:

Oxidative stress (OS) arises mainly from exposure to reactive oxygen species (ROS) such as superoxide anion, hydroxyl radical, and hydrogen peroxide. These molecules can cause significant damage to proteins, DNA, and lipids, leading to various diseases. Cells fight ROS with detoxifying enzymes; however, an imbalance can cause damage leading to ischemic conditions, heart disease progression, and neurological disorders such as Alzheimer's disease.

View Article and Find Full Text PDF

Collaborative performance of enzymatic saccharification and organic pollutant degradation from PHP (phosphoric acid coupled with hydrogen peroxide) pretreatment of lignocellulose.

J Environ Manage

January 2025

College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.

As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated.

View Article and Find Full Text PDF

Redox proteomics reveal a role for peroxiredoxinylation in stress protection.

Cell Rep

January 2025

Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Electronic address:

The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!