Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial intelligence (AI) and data science are beginning to impact drug discovery. It usually takes considerable time and efforts until new scientific concepts or technologies make a transition from conceptual stages to practical applicability and experience values are gathered. Especially for computational approaches, demonstrating measurable impact on drug discovery projects is not a trivial task. A pilot study at Daiichi Sankyo Company has attempted to integrate data science into practical medicinal chemistry and quantify the impact, as reported herein. Although characteristic features and focal points of early-phase drug discovery naturally vary at different pharmaceutical companies, the results of this pilot study indicate significant potential of data-driven medicinal chemistry and suggest new models for internal training of next-generation medicinal chemists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.drudis.2022.04.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!