A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

From traditional to data-driven medicinal chemistry: A case study. | LitMetric

From traditional to data-driven medicinal chemistry: A case study.

Drug Discov Today

Medicinal Chemistry Research Laboratories, R&D Division, Daiichi Sankyo Company, 140-8710 Tokyo, Japan.

Published: August 2022

Artificial intelligence (AI) and data science are beginning to impact drug discovery. It usually takes considerable time and efforts until new scientific concepts or technologies make a transition from conceptual stages to practical applicability and experience values are gathered. Especially for computational approaches, demonstrating measurable impact on drug discovery projects is not a trivial task. A pilot study at Daiichi Sankyo Company has attempted to integrate data science into practical medicinal chemistry and quantify the impact, as reported herein. Although characteristic features and focal points of early-phase drug discovery naturally vary at different pharmaceutical companies, the results of this pilot study indicate significant potential of data-driven medicinal chemistry and suggest new models for internal training of next-generation medicinal chemists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2022.04.017DOI Listing

Publication Analysis

Top Keywords

medicinal chemistry
12
drug discovery
12
data-driven medicinal
8
data science
8
impact drug
8
pilot study
8
traditional data-driven
4
medicinal
4
chemistry case
4
case study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!