Exploration of potential mechanism of interleukin-33 up-regulation caused by 1,4-naphthoquinone black carbon in RAW264.7 cells.

Sci Total Environ

Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China. Electronic address:

Published: August 2022

Background: As air pollution has been paid more attention to by public in recent years, effects and mechanism in particulate matter-triggered health problems become a focus of research. Lysosomes and mitochondria play an important role in regulation of inflammation. Interleukin-33 (IL-33) has been proved to promote inflammation in our previous studies. In this research, macrophage cell line RAW264.7 was used to explore the potential mechanism of upregulation of IL-33 induced by 1,4-naphthoquinone black carbon (1,4-NQ-BC), and to explore changes of lysosomes and mitochondria during the process.

Results: 50 μg/mL 1,4-NQ-BC exposure for 24 h dramatically increased expression of IL-33 in RAW264.7 cells. Lysosomal membrane permeability was damaged by 1,4-NQ-BC treatment, and higher mitochondrial membrane potential and ROS level were induced by 1,4-NQ-BC. The results of proteomics suggested that expression of ferritin light chain was increased after cells were challenged with 1,4-NQ-BC, and it was verified by Western blot. Meanwhile, expressions of p62 and LC3B-II were increased by 50 μg/mL 1,4-NQ-BC in RAW264.7 cells. Ultimately, expression of IL-33 could return to same level as control in cells treated with 50 μg/mL 1,4-NQ-BC and 50 μM deferoxamine combined.

Conclusions: 1,4-NQ-BC induces IL-33 upregulation in RAW264.7 cells, and it is responsible for higher lysosomal membrane permeability and ROS level, lower mitochondrial membrane potential, and inhibition of autophagy. Ferritin light chain possibly plays an important role in the upregulation of IL-33 evoked by 1,4-NQ-BC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.155357DOI Listing

Publication Analysis

Top Keywords

raw2647 cells
16
μg/ml 14-nq-bc
12
14-nq-bc
9
potential mechanism
8
14-naphthoquinone black
8
black carbon
8
lysosomes mitochondria
8
upregulation il-33
8
expression il-33
8
lysosomal membrane
8

Similar Publications

Jinyinqingre Oral Liquid alleviates LPS-induced acute lung injury by inhibiting the NF-κB/NLRP3/GSDMD pathway.

Chin J Nat Med

June 2023

School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China. Electronic address:

Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings.

View Article and Find Full Text PDF

Fasting protects liver from ischemic injury through Sirt1-mediated downregulation of circulating HMGB1 in mice.

J Hepatol

August 2014

Swiss Hepato-Pancreatico-Biliary Center, Department of Surgery, University Hospital Zürich, CH-8091 Zürich, Switzerland. Electronic address:

Background & Aims: Fasting and calorie restriction are associated with a prolonged life span and an increased resistance to stress. The protective effects of fasting have been exploited for the mitigation of ischemic organ injury, yet the underlying mechanisms remain incompletely understood. Here, we investigated whether fasting protects liver against ischemia reperfusion (IR) through energy-preserving or anti-inflammatory mechanisms.

View Article and Find Full Text PDF

Objective: To investigate the effect of RNA interfering TLR4 signal pathway on phagocytosis of Kupffer cells.

Methods: RAW2647 mice mononuclear macrophage leukemia cells were observed. The tested group was interfered by Tlr4-mus-1567 RNA which had the best result confirmed by QPCR, cells interfered by Negative Control RNA as NC group, and normal cell as control.

View Article and Find Full Text PDF

Coordinate regulation of TLR-mediated arachidonic acid mobilization in macrophages by group IVA and group V phospholipase A2s.

J Immunol

March 2009

Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Valladolid, Spain.

Macrophages can be activated through TLRs for a variety of innate immune responses. In contrast with the wealth of data existing on TLR-dependent gene expression and resultant cytokine production, very little is known on the mechanisms governing TLR-mediated arachidonic acid (AA) mobilization and subsequent eicosanoid production. We have previously reported the involvement of both cytosolic group IVA phospholipase A(2) (cPLA(2)) and secreted group V phospholipase A(2) (sPLA(2)-V) in regulating the AA mobilization response of macrophages exposed to bacterial LPS, a TLR4 agonist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!