With the prodigious use of plastics in the industrial sector and daily life, plastic has become one of the fastest-growing sources of pollution in the aquatic environment. Therefore, ingestion of micro/nanoplastics (MP/NPs) by aquatic organisms is inevitable. But the knowledge on the definite effect, ontogenetic transfer, and translocation of NPs remains incipient. Thus, this study examines the abundance of MPs in mosquito larvae collected from the sewage pit. Additionally, this study demonstrates the MPs-mediated biochemical alterations and effects on development of mosquito, and then ontogenetic transfer and translocation of NPs in Aedes aegypti. Totally 1241 MPs belonging to polyethylene, polycarbonate, polypropylene, polystyrene, polyvinyl chloride and nylon with sizes ranging from 0.5 μm to 80 μm in diameter were isolated from the mosquito larvae. Indeed all the four stages of mosquito larvae feed on NPs and subsequently transfer them to non-feeding pupa and then to flying adult mosquitoes, further to the offspring. However, the NPs exposure and accumulation did not affect the survival of mosquitoes, but altered the biochemical constituents, thereby delaying the development of mosquitoes. Notably the female mosquitoes that emerged from the NPs treatment group showed increased blood-feeding activity and increased starvation resistance capacity. The puzzling accumulation of NPs/residues in different organs, especially in the salivary gland signifies that female mosquitoes could potentially inject polymer residues into humans and animals. At the outset, these observations emphasize that the mosquitoes act as a vector of NPs in the aqueous environment and transport them to terrestrial animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.134666 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!