Diffusiophoresis of a moderately charged spherical colloidal particle.

Electrophoresis

Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.

Published: November 2022

AI Article Synopsis

Article Abstract

An analytic expression is obtained for the diffusiophoretic mobility of a charged spherical colloidal particle in a symmetrical electrolyte solution. The obtained expression, which is expressed in terms of exponential integrals, is correct to the third order of the particle zeta potential so that it is applicable for colloidal particles with low and moderate zeta potentials at arbitrary values of the electrical double-layer thickness. This is an improvement of the mobility formula derived by Keh and Wei, which is correct to the second order of the particle zeta potential. This correction, which is related to the electrophoresis component of diffusiophoresis, becomes more significant as the difference between the ionic drag coefficients of electrolyte cations and anions becomes larger and vanishes in the limit of thin or thick double layer. A simpler approximate mobility expression is further obtained that does not involve exponential integrals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.202200035DOI Listing

Publication Analysis

Top Keywords

charged spherical
8
spherical colloidal
8
colloidal particle
8
exponential integrals
8
order particle
8
particle zeta
8
zeta potential
8
diffusiophoresis moderately
4
moderately charged
4
particle
4

Similar Publications

In this study, hollow micron zero-valent iron (H-mZVI) was prepared using the ethylenediamine liquid phase reduction method. The microstructures were characterized by SEM, XRD, BET and FTIR. The results showed that H-mZVI possessed a spherical hollow structure with a particle size of approximately 1 μm.

View Article and Find Full Text PDF

Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.

View Article and Find Full Text PDF

Interest in metal nanoparticles synthesised using green methods is growing steadily. Metal nanoparticles can be synthesised inexpensively and effortlessly using extracts derived from different plants and their diverse components. Gold nanoparticles (Au NPs) were rapidly synthesised from Broccoli ( L.

View Article and Find Full Text PDF

Challenges and opportunities in 2D materials for high-performance aqueous ammonium ion batteries.

Natl Sci Rev

February 2025

Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.

Aqueous ammonium ion batteries (AAIBs) have attracted considerable attention due to their high safety and rapid diffusion kinetics. Unlike spherical metal ions, NH forms hydrogen bonds with host materials, leading to a unique storage mechanism. A variety of electrode materials have been proposed for AAIBs, but their performance often falls short in terms of future energy storage needs.

View Article and Find Full Text PDF

For the purpose of efficient temporary plugging and self-removal of the plugging of reservoir formations, the thermally induced expandable and acid-generating temporary plugging agent (TAPA) was prepared with acrylonitrile (AN), methacrylic acid (MAA), ,-dimethylacrylamide (DMAA), and butyl acrylate (BA) as the shell monomers as well as the carboxylate esters with high boiling points as the core material. The TAPA was structurally characterized, and the properties were studied. The results showed that the TAPA had a good spherical structure with a median particle size (D50) of 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!