Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study of lithic raw material quality has become one of the major interpretive tools to investigate the raw material selection behaviour and its influence to the knapping technology. In order to make objective assessments of raw material quality, we need to measure their mechanical properties (e.g., fracture resistance, hardness, modulus of elasticity). However, such comprehensive investigations are lacking for the Palaeolithic of Kazakhstan. In this work, we investigate geological and archaeological lithic raw material samples of chert, porphyry, and shale collected from the Inner Asian Mountain Corridor (henceforth IAMC). Selected samples of aforementioned rocks were tested by means of Vickers and Knoop indentation methods to determine the main aspect of their mechanical properties: their indentation fracture resistance (a value closely related to fracture toughness). These tests were complemented by traditional petrographic studies to characterise the mineralogical composition and evaluate the level of impurities that could have potentially affected the mechanical properties. The results show that materials, such as porphyry possess fracture toughness values that can be compared to those of chert. Previously, porphyry was thought to be of lower quality due to the anisotropic composition and coarse feldspar and quartz phenocrysts embedded in a silica rich matrix. However, our analysis suggests that different raw materials are not different in terms of indentation fracture resistance. This work also offers first insight into the quality of archaeological porphyry that was utilised as a primary raw material at various Upper Palaeolithic sites in the Inner Asian Mountain Corridor from 47-21 ka cal BP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033281 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265640 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!