Self-Powered Force Sensors for Multidimensional Tactile Sensing.

ACS Appl Mater Interfaces

Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.

Published: May 2022

A tactile sensor is the centerpiece in human-machine interfaces, enabling robotics or prosthetics to manipulate objects dexterously. Specifically, it is crucial to endow the sensor with the ability to detect and distinguish normal and shear forces in real time, so that slip detection and more complex control could be achieved during the interaction with objects. Here, a self-powered multidirectional force sensor (SMFS) based on triboelectric nanogenerators with a three-dimensional structure is proposed for sensing and analysis of normal and shear forces in real time. Four polydimethylsiloxane (PDMS) cylinders act as the force sensing structure of the SMFS. A flexible tip array made of carbon black/MXene/PDMS composites is used to generate triboelectric signals when the SMFS is driven by an external force. The SMFS can sense multidimensional force due to the adaptability of the PDMS cylinders and detect tiny force due to the sensitivity of the flexible tips. A small shear force as low as 50 mN could be recognized using the SMFS. The direction of the externally applied force could be recognized by analyzing the location and output voltage amplitude of the SMFS. Moreover, the tactile sensing applications, including reagent weighing and force direction perception, are also achieved by using the SMFS, which demonstrates the potential in promoting developments of self-powered wearable sensors, human-machine interactions, electronic skin, and soft robotic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c03812DOI Listing

Publication Analysis

Top Keywords

tactile sensing
8
normal shear
8
shear forces
8
forces real
8
real time
8
force
8
pdms cylinders
8
smfs
7
self-powered force
4
force sensors
4

Similar Publications

Objective: This study aimed to evaluate the effectiveness of combining basketball training with a traditional sensory integration therapy (SIT) vs. a SIT alone in enhancing sensory integration capability among Chinese children diagnosed with mild challenges in sensory integration and sensory processing (CSISP).

Methods: This study comprised a Control group and an Experimental group, both undergoing a 10-week intervention (4 sessions/week, 45 min/session).

View Article and Find Full Text PDF

Soft Artificial Synapse Electronics.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.

Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.

View Article and Find Full Text PDF

Inspired by human skin, bionic tactile sensing is effectively promoting development and innovation in many fields with its flexible and efficient perception capabilities. Optical fiber, with its ability to perceive and transmit information and its flexible characteristics, is considered a promising solution in the field of tactile bionics. In this work, one optical fiber tactile sensing system based on a flexible PDMS-embedded optical fiber ring resonator (FRR) is designed for braille recognition, and the Pound-Drever-Hall (PDH) demodulation scheme is adopted to improve the detection sensitivity.

View Article and Find Full Text PDF

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!