Composite fibrous materials are prepared from poly(ethylene oxide) (PEO) and beeswax (BW) by single-spinneret electrospinning using chloroform as a common solvent. The obtained fibers have core-sheath-like structure, as evidenced by the water contact angle values and corroborated by the results on the elemental composition of the fiber's surface determined by X-ray photoelectron spectroscopy (XPS) and by analyses with scanning electron microscopy of fibers before and after selective extraction of PEO or BW. Furthermore, the core-sheath-like structure is proven by transmission electron microscopy. This is attributed to self-assembly of BW molecules on the surface of the formed fibers driven by the incompatibility between PEO and BW. 5-Nitro-8-hydroxyquinoline (NQ) is embedded as a model drug with antibacterial, antifungal, and anticancer properties in the PEO/BW fibrous materials. XPS analyses reveal that NQ is present on the surface of the PEO/BW/NQ materials. Using a purposely designed cell for fixation of the fibrous materials the NQ release in phosphate buffer solution with рН 7.4 is followed. The new PEO/BW/NQ fibrous materials exhibit antibacterial activity against S. aureus and E. coli, antifungal effect against C. albicans, and selective anticancer activity against HeLa (human cervical adenocarcinoma cells) and SH-4 (human melanoma cells) cell lines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202200015 | DOI Listing |
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), NO.38, Wuyingshan Road, Tianqiao District, Jinan, 250031, China.
The bacterial infection and oxidative wound microenvironment delay skin repair and necessitate intelligent wound dressings to enable scarless wound healing. The immunoglobulin of yolk (IgY) exhibits immunotherapeutic potential for the potential treatment of antimicrobial-resistant pathogens, while cerium oxide nanoparticles (CeO NPs) could scavenge superoxide dismutase (SOD) and inflammation. The overarching objective of this study was to incorporate IgY and CeO NPs into poly(L-lactide-co-glycolide)/gelatin (PLGA/Gel)-based dressings (P/G@IYCe) for infected skin repair.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania.
Electrospinning, a technique for creating fabric materials from polymer solutions, is widely used in various fields, including biomedicine. The unique properties of electrospun fibrous membranes, such as large surface area, compositional versatility, and customizable porous structure, make them ideal for advanced biomedical applications like tissue engineering and wound healing. By considering the high biocompatibility and well-known regenerative potential of polylactic acid (PLA) and chitosan (CH), as well as the versatile antibacterial effect of silver nanoparticles (AgNPs), this study explores the antibacterial efficacy, adhesive properties, and cytotoxicity of electrospun chitosan membranes with a unique nanofibrous structure and varying concentrations of AgNPs.
View Article and Find Full Text PDFNat Rev Chem
January 2025
Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!