Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A hallmark of osteoarthritis (OA) is cartilage degeneration, which has been previously correlated with dramatic increases in inflammatory enzymes. Specifically, interleukin-1β (IL-1β) and subsequent upregulation of nuclear factor kappa B (NF-κB) is implicated as an important player in the development of posttraumatic osteoarthritis (PTOA). Alpha 2-macroglobulin (A2M) can inhibit this inflammatory pathway, making it a promising therapy for PTOA. Herein, we demonstrate that A2M binds and neutralizes IL-1β, blocking downstream NF-κB-induced catabolism seen in in vitro. Human chondrocytes (cell line C28) were incubated with A2M protein and then treated with IL-1β. A2M was labeled with VivoTag™ 680 to localize the protein postincubation. The degree of binding between A2M and IL-1β was evaluated through immunoprecipitation (IP). Catabolic proteins, including IL-1β and NF-kB, were detected by Western blot. Pro-inflammatory and chondrocyte-related gene expression was examined by qRT-PCR. VivoTag™ 680-labeled A2M was observed in the cytoplasm of C28 human chondrocytes by fluorescence microscopy. IP experiments demonstrated that A2M could bind IL-1β. Additionally, western blot analysis revealed that A2M neutralized IL-1β and NF-κB in a dose-dependent manner. Moreover, A2M decreased levels of MMPs and TNF-α and increased the expression of cartilage protective genes Col2, Type2, Smad4, and aggrecan. Mostly importantly, A2M was shown to directly neutralize IL-1β to downregulate the pro-inflammatory responses mediated by the NF-kB pathway. These results demonstrate a mechanism by which A2M reduces inflammatory catabolic activity and protects cartilage after joint injury. Further in vivo studies are needed to fully understand the potential of A2M as a novel PTOA therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jor.25348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!