Background: At present, the research on achiral drug and pesticide residue detection methods is still the mainstay at home and abroad, and there is still a lack of systematic research on the enantiomeric analysis of chiral drugs and pesticides.

Objective: In order to prepare a novel chiral stationary phase, whose "multi-mode" chiral separation chromatographic performance and its utility was verified.

Method: An S-(-)-2-benzylamino-1-phenylethanol mono-derivative β-cyclodextrin bonded stationary phase (BzCSP) was prepared based on the "thiol-ene" addition reaction. The chiral compounds including four types of chiral compounds were used as "probes," and their chiral chromatographic properties were evaluated. Furthermore, a new LC-MS/MS method for the determination of the enantiomeric residues of three chiral pesticides in five kinds of fruits and vegetables was established.

Results: The study found that the novel stationary phase was suitable for a variety of chromatographic modes (normal phase mode, reversed-phase mode, polar organic mode). The resolutions of hexaconazole (Hex), tebuconazole (Teb), and triticonazole (Trit) enantiomers could be up to 2.31, 1.68, and 1.48, respectively, within 30 min under reversed-phase chromatography. Based on the optimal chromatographic and mass spectrum conditions, a new LC-MS/MS quantitative method for the Hex, Teb, and Trit enantiomers was established by multi-reaction positive ion monitoring (MRM). The detection limits (LODs) of enantiomers were less than 0.89 µg/kg for Hex, 0.93 µg/kg for Teb, and 0.93 µg/kg for Trit, and the averaged recoveries of enantiomers were in the range of 75.8-106.3% for Hex, 77.4-116.3% for Teb, and 78.7-113.4% for Trit. The method had good reproducibility with the RSDs (<5%) for intraday and (<7%) for interday.

Conclusions: The established method had the characteristics of good selectivity, high sensitivity, strong resistance to matrix interference, and good reproducibility. It is indicated that the stationary phase prepared by the "thiol-ene" addition reaction is a new type of multi-mode stationary phase, which has a good development value.

Highlights: The study reported a new method for the rapid preparation of a rare "multi-mode" chiral stationary phase BzCSP based on the "thiol-ene" addition reaction and verified the practicability of BzCSP including good selectivity, high sensitivity, strong resistance to matrix interference, and good reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jaoacint/qsac047DOI Listing

Publication Analysis

Top Keywords

stationary phase
12
chiral
8
fruits vegetables
8
chiral compounds
8
trit enantiomers
8
phase
5
enantiomers
5
benzyl phenethanolamine-β-cyclodextrin
4
phenethanolamine-β-cyclodextrin bonded
4
bonded phase
4

Similar Publications

Size exclusion chromatography-gradient (SEC-Gradient) is a powerful technique to separate polymers by their chemical composition. The stationary phase is first conditioned with a gradient from adsorli to desorli, and polymer samples are injected after the gradient in SEC conditions. Since its first description in 2011 by Schollenberger and Radke, it has never been applied to block copolymers.

View Article and Find Full Text PDF

Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.

View Article and Find Full Text PDF

Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.

View Article and Find Full Text PDF

In this study, we extended a previously developed one-pot double derivatization reaction to establish the first routine isotope-coded multiplex derivatization for vitamin D and its metabolites for application in clinical environments, using commercial reagents, without the need for specialized reagents and advanced synthesis requirements. The original derivatization process consisted of using both a Cookson-type reagent and derivatization of hydroxyl groups. Initially, the analytes are derivatized by a Diels-Alder reaction using 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), followed by acetylation using acetic anhydride, catalyzed by 4-dimethylaminopyridine at room temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!