A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering. | LitMetric

Motivation: Thanks to the development of high-throughput sequencing technologies, massive amounts of various biomolecular data have been accumulated to revolutionize the study of genomics and molecular biology. One of the main challenges in analyzing this biomolecular data is to cluster their subtypes into subpopulations to facilitate subsequent downstream analysis. Recently, many clustering methods have been developed to address the biomolecular data. However, the computational methods often suffer from many limitations such as high dimensionality, data heterogeneity and noise.

Results: In our study, we develop a novel Graph-based Multiple Hierarchical Consensus Clustering (GMHCC) method with an unsupervised graph-based feature ranking (FR) and a graph-based linking method to explore the multiple hierarchical information of the underlying partitions of the consensus clustering for multiple types of biomolecular data. Indeed, we first propose to use a graph-based unsupervised FR model to measure each feature by building a graph over pairwise features and then providing each feature with a rank. Subsequently, to maintain the diversity and robustness of basic partitions (BPs), we propose multiple diverse feature subsets to generate several BPs and then explore the hierarchical structures of the multiple BPs by refining the global consensus function. Finally, we develop a new graph-based linking method, which explicitly considers the relationships between clusters to generate the final partition. Experiments on multiple types of biomolecular data including 35 cancer gene expression datasets and eight single-cell RNA-seq datasets validate the effectiveness of our method over several state-of-the-art consensus clustering approaches. Furthermore, differential gene analysis, gene ontology enrichment analysis and KEGG pathway analysis are conducted, providing novel insights into cell developmental lineages and characterization mechanisms.

Availability And Implementation: The source code is available at GitHub: https://github.com/yifuLu/GMHCC. The software and the supporting data can be downloaded from: https://figshare.com/articles/software/GMHCC/17111291.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btac290DOI Listing

Publication Analysis

Top Keywords

biomolecular data
24
consensus clustering
16
multiple hierarchical
12
data
9
graph-based multiple
8
hierarchical consensus
8
graph-based linking
8
linking method
8
multiple types
8
types biomolecular
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!